Skip to main content

Advertisement

Log in

Comparison of visual outcomes after two types of mix-and-match implanted trifocal extended-depth-of-focus and trifocal intraocular lenses

  • Cataract
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To compare visual outcomes between two types of mix-and-match implanted trifocal extended-depth-of-focus (EDoF) and trifocal intraocular lenses (IOLs).

Methods

A total of 212 eyes of 106 subjects with mix-and-match implanted FineVision Triumf and FineVision HP IOLs (Triumf–HP group) and 212 eyes of 106 subjects with mix-and-match implanted Zeiss AT LARA and AT LISA IOLs (AT LARA–LISA group) were enrolled in this retrospective case–control study. Uncorrected distance visual acuity (UDVA), uncorrected near visual acuity (UNVA), and binocular distance-corrected defocus curves were measured between 6 and 10 weeks after cataract surgery.

Results

There was no significant difference in UDVA among the four IOLs. UNVA was the best in eyes with the FineVision HP IOL (0.04 ± 0.06 logMAR), followed by eyes with the AT LISA IOL (0.07 ± 0.07 logMAR), the FineVision Triumf IOL (0.09 ± 0.09 logMAR), and the AT LARA IOL (0.11 ± 0.08 logMAR), respectively. The AT LARA–LISA group had better visual acuity than the Triumf–HP group between − 1.00 D and − 1.50 D of defocus, and the Triumf–HP group had better visual acuity than the AT LARA–LISA group between − 3.00 D and − 4.00 D of defocus.

Conclusion

Mix-and-match implantation of trifocal EDoF and trifocal IOLs provided good visual outcomes in far, intermediate, and near distances. The mix-and-match implantation of Triumf–HP IOLs led to better visual outcomes in near vision, while that of the AT LARA–LISA IOLs led to better visual outcomes in intermediate vision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Taylor HR, Keeffe JE (2001) World blindness: a 21st century perspective. Br J Ophthalmol 85:261–266. https://doi.org/10.1136/bjo.85.3.261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. de Silva SR, Evans JR, Kirthi V, Ziaei M, Leyland M (2016) Multifocal versus monofocal intraocular lenses after cataract extraction. Cochrane Database Syst Rev 12:Cd003169. https://doi.org/10.1002/14651858.CD003169.pub4

    Article  PubMed  Google Scholar 

  3. Bartol-Puyal FA, Talavero P, Giménez G, Altemir I, Larrosa JM, Polo V, Pablo LE (2017) Reading and quality of life differences between Tecnis ZCB00 monofocal and Tecnis ZMB00 multifocal intraocular lenses. Eur J Ophthalmol 27:443–453. https://doi.org/10.5301/ejo.5000925

    Article  PubMed  Google Scholar 

  4. Chaves MA, Hida WT, Tzeliks PF, Gonçalves MR, Nogueira Fde B, Nakano CT, Motta AF, Araújo AG, Alves MR (2016) Comparative study on optical performance and visual outcomes between two diffractive multifocal lenses: AMO Tecnis ® ZMB00 and AcrySof ® IQ ReSTOR ® Multifocal IOL SN6AD1. Arq Bras Oftalmol 79:171–176. https://doi.org/10.5935/0004-2749.20160050

    Article  PubMed  Google Scholar 

  5. Kamiya K, Hayashi K, Shimizu K, Negishi K, Sato M, Bissen-Miyajima H (2014) Multifocal intraocular lens explantation: a case series of 50 eyes. Am J Ophthalmol 158:215-220.e211. https://doi.org/10.1016/j.ajo.2014.04.010

    Article  PubMed  Google Scholar 

  6. Eom Y, Song JS, Kim HM (2017) Spectacle plane add power of multifocal intraocular lenses according to effective lens position. Can J Ophthalmol 52:54–60. https://doi.org/10.1016/j.jcjo.2016.07.026

    Article  PubMed  Google Scholar 

  7. Rampat R, Gatinel D (2021) Multifocal and extended depth-of-focus intraocular lenses in 2020. Ophthalmology 128:e164–e185. https://doi.org/10.1016/j.ophtha.2020.09.026

    Article  PubMed  Google Scholar 

  8. Yang CM, Lim DH, Hwang S, Hyun J, Chung TY (2018) Prospective study of bilateral mix-and-match implantation of diffractive multifocal intraocular lenses in Koreans. BMC Ophthalmol 18:73. https://doi.org/10.1186/s12886-018-0735-0

    Article  PubMed  PubMed Central  Google Scholar 

  9. Eom Y, Kim DW, Ryu D, Kim JH, Yang SK, Song JS, Kim SW, Kim HM (2017) Ring-shaped dysphotopsia associated with posterior chamber phakic implantable collamer lenses with a central hole. Acta Ophthalmol 95:e170–e178. https://doi.org/10.1111/aos.13248

    Article  PubMed  Google Scholar 

  10. Kim JW, Eom Y, Chung HW, Song JS, Jeong JW, Park SK, Kim HM (2020) Factors for good near and distance visual outcomes of multifocal intraocular lens with inferior segmental near add. Graefes Arch Clin Exp Ophthalmol 258:1735–1743. https://doi.org/10.1007/s00417-020-04761-1

    Article  PubMed  Google Scholar 

  11. Kim JH, Eom Y, Park SY, Choi SY, Hwang HS, Kim JH, Song JS, Kim HM (2020) Rainbow halos occur less following implantation of extended range of vision one-piece intraocular lenses vs diffractive bifocal intraocular lenses. Int J Ophthalmol 13:913–919. https://doi.org/10.18240/ijo.2020.06.09

  12. Kim JS, Jung JW, Lee JM, Seo KY, Kim EK, Kim TI (2015) Clinical outcomes following implantation of diffractive multifocal intraocular lenses with varying add powers. Am J Ophthalmol 160:702-709.e701. https://doi.org/10.1016/j.ajo.2015.07.021

    Article  PubMed  Google Scholar 

  13. Carson D, Hill WE, Hong X, Karakelle M (2014) Optical bench performance of AcrySof(®) IQ ReSTOR(®), AT LISA(®) tri, and FineVision(®) intraocular lenses. Clin Ophthalmol 8:2105–2113. https://doi.org/10.2147/opth.S66760

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rodov L, Reitblat O, Levy A, Assia EI, Kleinmann G (2019) Visual outcomes and patient satisfaction for trifocal, extended depth of focus and monofocal intraocular lenses. J Refract Surg 35:434–440. https://doi.org/10.3928/1081597x-20190618-01

    Article  PubMed  Google Scholar 

  15. Liu J, Dong Y, Wang Y (2019) Efficacy and safety of extended depth of focus intraocular lenses in cataract surgery: a systematic review and meta-analysis. BMC Ophthalmol 19:198. https://doi.org/10.1186/s12886-019-1204-0

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rocha KM (2017) Extended Depth of Focus IOLs: The next chapter in refractive technology? J Refract Surg 33:146–149. https://doi.org/10.3928/1081597x-20170217-01

    Article  PubMed  Google Scholar 

  17. Ruiz-Mesa R, Abengózar-Vela A, Aramburu A, Ruiz-Santos M (2017) Comparison of visual outcomes after bilateral implantation of extended range of vision and trifocal intraocular lenses. Eur J Ophthalmol 27:460–465. https://doi.org/10.5301/ejo.5000935

    Article  PubMed  Google Scholar 

  18. Tarib I, Kasier I, Herbers C, Hagen P, Breyer D, Kaymak H, Klabe K, Lucchesi R, Teisch S, Diakonis VF, Hahn U, Fabian H, Kretz FTA (2019) Comparison of visual outcomes and patient satisfaction after bilateral implantation of an EDOF IOL and a mix-and-match approach. J Refract Surg 35:408–416. https://doi.org/10.3928/1081597x-20190417-02

    Article  PubMed  Google Scholar 

  19. de Medeiros AL, de Araújo Rolim AG, Motta AFP, Ventura BV, Vilar C, Chaves M, Carricondo PC, Hida WT (2017) Comparison of visual outcomes after bilateral implantation of a diffractive trifocal intraocular lens and blended implantation of an extended depth of focus intraocular lens with a diffractive bifocal intraocular lens. Clin Ophthalmol 11:1911–1916. https://doi.org/10.2147/opth.S145945

    Article  PubMed  PubMed Central  Google Scholar 

  20. Reinhard T, Maier P, Böhringer D, Bertelmann E, Brockmann T, Kiraly L, Salom D, Piovella M, Colonval S, Mendicute J (2021) Comparison of two extended depth of focus intraocular lenses with a monofocal lens: a multi-centre randomised trial. Graefes Arch Clin Exp Ophthalmol 259:431–442. https://doi.org/10.1007/s00417-020-04868-5

    Article  PubMed  Google Scholar 

  21. Lapid-Gortzak R, Bhatt U, Sanchez JG, Guarro M, Hida WT, Bala C, Nosé RM, Rodriguez Alvira FJ, Martinez A (2020) Multicenter visual outcomes comparison of 2 trifocal presbyopia-correcting IOLs: 6-month postoperative results. J Cataract Refract Surg 46:1534–1542. https://doi.org/10.1097/j.jcrs.0000000000000274

    Article  PubMed  Google Scholar 

  22. Sezgin Asena B (2019) Visual and refractive outcomes, spectacle independence, and visual disturbances after cataract or refractive lens exchange surgery: comparison of 2 trifocal intraocular lenses. J Cataract Refract Surg 45:1539–1546. https://doi.org/10.1016/j.jcrs.2019.06.005

    Article  PubMed  Google Scholar 

  23. Marques EF, Ferreira TB (2015) Comparison of visual outcomes of 2 diffractive trifocal intraocular lenses. J Cataract Refract Surg 41:354–363. https://doi.org/10.1016/j.jcrs.2014.05.048

    Article  PubMed  Google Scholar 

  24. Cochener B (2016) Prospective clinical comparison of patient outcomes following implantation of trifocal or bifocal intraocular lenses. J Refract Surg 32:146–151. https://doi.org/10.3928/1081597x-20160114-01

    Article  PubMed  Google Scholar 

  25. McAlinden C, Pesudovs K, Moore JE (2010) The development of an instrument to measure quality of vision: the Quality of Vision (QoV) questionnaire. Invest Ophthalmol Vis Sci 51:5537–5545. https://doi.org/10.1167/iovs.10-5341

    Article  PubMed  Google Scholar 

  26. Ribeiro F, Ferreira TB (2020) Comparison of clinical outcomes of 3 trifocal IOLs. J Cataract Refract Surg 46:1247–1252. https://doi.org/10.1097/j.jcrs.0000000000000212

    Article  PubMed  Google Scholar 

  27. Terauchi R, Horiguchi H, Ogawa S, Sano K, Ogawa T, Shiba T, Nakano T (2021) Age-related visual outcomes in eyes with diffractive multifocal intraocular lenses. Eye (Lond). https://doi.org/10.1038/s41433-021-01854-x

    Article  Google Scholar 

  28. Takabatake R, Takahashi M (2021) Preoperative factors affecting visual acuity following the implantation of diffractive multifocal intraocular lenses. J Refract Surg 37:674–679. https://doi.org/10.3928/1081597X-20210712-01

    Article  PubMed  Google Scholar 

  29. Koga T, Koga T (2015) Factors affecting uncorrected visual acuity following implantation of apodized diffractive intraocular lenses. Nippon Ganka Gakkai Zasshi 119:846–854

    CAS  PubMed  Google Scholar 

  30. Chang DF (2008) Prospective functional and clinical comparison of bilateral ReZoom and ReSTOR intraocular lenses in patients 70 years or younger. J Cataract Refract Surg 34:934–941. https://doi.org/10.1016/j.jcrs.2007.12.053

    Article  PubMed  Google Scholar 

  31. Lee H, Lee K, Ahn JM, Kim EK, Sgrignoli B, Kim TI (2014) Evaluation of optical quality parameters and ocular aberrations in multifocal intraocular lens implanted eyes. Yonsei Med J 55:1413–1420. https://doi.org/10.3349/ymj.2014.55.5.1413

    Article  PubMed  PubMed Central  Google Scholar 

  32. Eom Y, Yang SK, Yoon EG, Choi JN, Ryu D, Kim DW, Kim JH, Song JS, Kim SW, Kim HM (2020) Multizonal design multifocal intraocular lens-induced astigmatism according to orientation. J Refract Surg 36:740–748. https://doi.org/10.3928/1081597x-20200828-02

    Article  PubMed  Google Scholar 

  33. Kim JW, Eom Y, Yoon EG, Choi Y, Song JS, Jeong JW, Park SK, Kim HM (2021) Comparison of Nd:YAG laser capsulotomy rates between refractive segmented multifocal and multifocal Toric intraocular lenses. Am J Ophthalmol 222:359–367. https://doi.org/10.1016/j.ajo.2020.09.046

    Article  CAS  PubMed  Google Scholar 

  34. Kim JW, Eom Y, Yoon EG, Song JS, Jeong JW, Park SK, Kim HM (2021) Increased near vision spectacle dependence of patients with preoperative myopia after mix-and-match implantation of trifocal EDOF and trifocal IOLs. J Refract Surg 37:746–753. https://doi.org/10.3928/1081597x-20210802-02

    Article  PubMed  Google Scholar 

  35. Eom Y, Kang SY, Song JS, Kim HM (2013) Comparison of the actual amount of axial movement of 3 aspheric intraocular lenses using anterior segment optical coherence tomography. J Cataract Refract Surg 39:1528–1533. https://doi.org/10.1016/j.jcrs.2013.04.040

    Article  PubMed  Google Scholar 

  36. Eom Y, Kang SY, Song JS, Kim HM (2013) Use of corneal power-specific constants to improve the accuracy of the SRK/T formula. Ophthalmology 120:477–481. https://doi.org/10.1016/j.ophtha.2012.09.008

    Article  PubMed  Google Scholar 

  37. Eom Y, Yoo E, Kang SY, Kim HM, Song JS (2013) Change in efficiency of aspheric intraocular lenses based on pupil diameter. Am J Ophthalmol 155:492-498.e492. https://doi.org/10.1016/j.ajo.2012.09.024

    Article  PubMed  Google Scholar 

  38. Choi Y, Eom Y, Song JS, Kim HM (2017) Influence of corneal power on intraocular lens power of the second eye in the SRK/T formula in bilateral cataract surgery. BMC Ophthalmol 17:261. https://doi.org/10.1186/s12886-017-0664-3

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kim M, Eom Y, Lee H, Suh YW, Song JS, Kim HM (2018) Use of the posterior/anterior corneal curvature radii ratio to improve the accuracy of intraocular lens power calculation: Eom’s Adjustment Method. Invest Ophthalmol Vis Sci 59:1016–1024. https://doi.org/10.1167/iovs.17-22405

    Article  PubMed  Google Scholar 

  40. Kim M, Eom Y, Song JS, Kim HM (2018) Comparative evaluation of refractive outcomes after implantation of two types of intraocular lenses with different diopter intervals (0.25 diopter versus 0.50 diopter). BMC Ophthalmol 18:176. https://doi.org/10.1186/s12886-018-0840-0

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kim JW, Eom Y, Yoon EG, Choi Y, Song JS, Jeong JW, Park SK, Kim HM (2022) Algorithmic intraocular lens power calculation formula selection by keratometry, anterior chamber depth and axial length. Acta Ophthalmol 100:e701–e709. https://doi.org/10.1111/aos.14956

    Article  PubMed  Google Scholar 

  42. Chang SW, Wu WL (2021) Age affects intraocular lens attributes preference in cataract surgery. Taiwan J Ophthalmol 11:280–286. https://doi.org/10.4103/tjo.tjo_20_20

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by a TRC Research Grant of the Korea University Medicine and Korea Institute of Science and Technology, by Korea University Ansan Hospital grant, by Korea University grants (K1625491, K1722121, K1811051, K1913161, and K2010921), by the Korea Medical Device Development Fund grant funded by the Korea government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health & Welfare, the Ministry of Food and Drug Safety) (Project Number: 9991007583, KMDF_PR_20200901_0296), by Korea Environment Industry & Technology Institute(KEITI) through Technology Development Project for Safety Management of Household Chemical Products, funded by Korea Ministry of Environment (MOE) (2020002960007, NTIS-1485017544), by the Technology Development Program (S3127902) funded by the Ministry of SMEs and Startups (MSS, Korea), and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2021R1F1A1062017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngsub Eom.

Ethics declarations

Ethics approval

All procedures performed in studies involving human participants were in accordance with the Institutional Review Board of Korea University Ansan Hospital (IRB no. 2021AS0091), the Public Institutional Bioethics Committee, Seoul, Republic of Korea (no. P01-202106–21-004), and the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

According to the IRB standard operating procedures on retrospective clinical study, the Ethics Committee ruled that subject consent was not required for this study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.W., Eom, Y., Park, W. et al. Comparison of visual outcomes after two types of mix-and-match implanted trifocal extended-depth-of-focus and trifocal intraocular lenses. Graefes Arch Clin Exp Ophthalmol 260, 3275–3283 (2022). https://doi.org/10.1007/s00417-022-05710-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-022-05710-w

Keywords

Navigation