Skip to main content

Advertisement

Log in

Synergic effect of corneal hysteresis and central corneal thickness in the risk of early-stage primary open-angle glaucoma progression

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate corneal hysteresis (CH), acquired with ocular response analyzer (ORA), as a risk factor for glaucoma progression in early-stage primary open-angle glaucoma (POAG).

Methods

In a historical cohort study, patients diagnosed in 2011 with early-stage POAG according to the Hodapp, Parrish and Anderson classification modified for Octopus perimetry and followed up until glaucomatous progression development; otherwise, observations were censored in October 2018. Cox regression was used to obtain hazard ratios (HR) to evaluate baseline variables (CH, central corneal thickness, gender, age IOP and glaucoma family history) as risk factors for perimetric glaucoma progression. A likelihood ratio test for interaction was performed in order to assess the effect of the combination of CH and CCT on the risk of progression.

Results

Of the cohort of 1573 patients, 11.38% developed early-stage POAG progression during the follow-up. The mean follow-up time was 3.28 ± 1.92 years. Patients without progression had a higher CH (11.35 ± 1.43 vs 9.07 ± 1.69 mmHg; p < 0.001) and CCT (570.75 ± 17.71 vs 554.51 ± 23.20; p < 0.001). In the multivariate analysis, each 1 mmHg of lower CH was associated with an increase of 2.13 times in the HR of progression (95% CI: 1.92–2.32; p < 0.001). CH hazard ratio was modified by CCT, with higher values of CCT and CH resulting in a higher HR of early glaucoma progression (p < 0.001).

Conclusions

CH can be considered as a risk factor of progression in early-stage POAG. The risk associated with CH changed depending on CCT values, acting synergistically slowing the risk of glaucoma progression with higher values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Although we have not included it in our submission, the data is available for reviewers to check.

Code availability

Not applicable.

References

  1. Weinreb RN, Aung T, Medeiros FA (2014) The pathophysiology and treatment of glaucoma: a review. JAMA 311:1901–1911. https://doi.org/10.1001/jama.2014.3192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Congdon NG, Broman AT, Bandeen-Roche K et al (2006) Central corneal thickness and corneal hysteresis associated with glaucoma damage. Am J Ophthalmol 141:868–875. https://doi.org/10.1016/j.ajo.2005.12.007

    Article  PubMed  Google Scholar 

  3. Martinez-de-la-Casa JM, Garcia-Feijoo J, Fernandez-Vidal A et al (2006) Ocular response analyzer versus Goldmannapplanation tonometry for intraocular pressure measurements. Invest Opthalmol Vis Sci 47:4410–4414. https://doi.org/10.1167/iovs.06-0158

    Article  Google Scholar 

  4. Luce DA (2005) Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg 31:156–162. https://doi.org/10.1016/j.jcrs.2004.10.044

    Article  PubMed  Google Scholar 

  5. Wells AP, Garway-Heath DF, Poostchi A et al (2008) Corneal hysteresis but not corneal thickness correlates with optic nerve surface compliance in glaucoma patients. Invest Ophthalmol Vis Sci 49:3262–3268. https://doi.org/10.1167/iovs.07-1556

    Article  PubMed  Google Scholar 

  6. Burgoyne CF, Downs JC, Bellezza AJ et al (2005) The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res 24:39–73. https://doi.org/10.1016/j.preteyeres.2004.06.001

    Article  PubMed  Google Scholar 

  7. Carbonaro F, Hysi PG, Fahy SJ et al (2014) Optic disc planimetry, corneal hysteresis, central corneal thickness, and intraocular pressure as risk factors for glaucoma. Am J Ophthalmol 157:441–446. https://doi.org/10.1016/j.ajo.2013.10.017

    Article  PubMed  Google Scholar 

  8. Kaushik S, Pandav SS, Banger A et al (2012) Relationship between corneal biomechanical properties, central corneal thickness, and intraocular pressure across the spectrum of glaucoma. Am J Ophthalmol 153:840-849.e2. https://doi.org/10.1016/j.ajo.2011.10.032

    Article  PubMed  Google Scholar 

  9. De Moraes CVG, Hill V, Tello C et al (2012) Lower corneal hysteresis is associated with more rapid glaucomatous visual field progression. J Glaucoma 21:209–213. https://doi.org/10.1097/IJG.0b013e3182071b92

    Article  PubMed  Google Scholar 

  10. Medeiros FA, Meira-Freitas D, Lisboa R et al (2013) Corneal hysteresis as a risk factor for glaucoma progression: a prospective longitudinal study. Ophthalmology 120:1533–1540. https://doi.org/10.1016/j.ophtha.2013.01.032

    Article  PubMed  Google Scholar 

  11. Susanna CN, Diniz-Filho A, Daga FB et al (2018) A prospective longitudinal study to investigate corneal hysteresis as a risk factor for predicting development of glaucoma. Am J Ophthalmol 187:148–152. https://doi.org/10.1016/j.ajo.2017.12.018

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hirasawa K, Matsuura M, Murata H et al (2017) Association between corneal biomechanical properties with ocular response analyzer and also CorvisST Tonometry, and glaucomatous visual field severity. Transl Vis Sci Technol 6:18. https://doi.org/10.1167/tvst.6.3.18

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mansouri K, Leite MT, Weinreb RN et al (2012) Association between corneal biomechanical properties and glaucoma severity. Am J Ophthalmol 153:419–427. https://doi.org/10.1016/j.ajo.2011.08.022

    Article  PubMed  Google Scholar 

  14. Hodapp E, Parrish RK II, Anderson D (1993) Clinical decisions in glaucoma. Mosby-Year Book Inc, St Louis, pp 52–61

  15. Naghizadeh F, Holló G (2014) Detection of early glaucomatous progression with octopus cluster trend analysis. J Glaucoma 23:269–275. https://doi.org/10.1097/IJG.0b013e3182741c69

    Article  PubMed  Google Scholar 

  16. Morales J, Weitzman ML, González de la Rosa M (2000) Comparison between tendency-oriented perimetry (TOP) and Octopus threshold perimetry. Ophthalmology 107:134–142. https://doi.org/10.1016/S0161-6420(99)00026-3

    Article  CAS  PubMed  Google Scholar 

  17. Deol M, Taylor DA, Radcliffe NM (2015) Corneal hysteresis and its relevance to glaucoma. Curr Opin Ophthalmol 26:96–102. https://doi.org/10.1097/ICU.0000000000000130

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nongpiur ME, Png O, Chiew JW et al (2015) Lack of association between corneal hysteresis and corneal resistance factor with glaucoma severity in primary angle closure glaucoma. Invest Opthalmol Vis Sci 56:6879–6885. https://doi.org/10.1167/iovs.15-17930

    Article  CAS  Google Scholar 

  19. Lee KM, Kim T-W, Lee EJ et al (2019) Association of corneal hysteresis with lamina cribrosa curvature in primary open angle glaucoma. Invest Ophthalmol Vis Sci 60:4171–4177. https://doi.org/10.1167/iovs.19-27087

    Article  PubMed  Google Scholar 

  20. Terai N, Raiskup F, Haustein M et al (2012) Identification of biomechanical properties of the cornea: the ocular response analyzer. Curr Eye Res 37:553–562. https://doi.org/10.3109/02713683.2012.669007

    Article  PubMed  Google Scholar 

  21. Ozkok A, Tamcelik N, Ozdamar A et al (2013) Corneal viscoelastic differences between pseudoexfoliative glaucoma and primary open-angle glaucoma. J Glaucoma 22:740–7455. https://doi.org/10.1097/IJG.0000000000000036

    Article  PubMed  Google Scholar 

  22. Chan TCW, Bala C, Siu A et al (2017) Risk factors for rapid glaucoma disease progression. Am J Ophthalmol 180:151–157. https://doi.org/10.1016/j.ajo.2017.06.003

    Article  PubMed  Google Scholar 

  23. Kim JH, Rabiolo A, Morales E et al (2019) Risk factors for fast visual field progression in glaucoma. Am J Ophthalmol 207:268–278. https://doi.org/10.1016/j.ajo.2019.06.019

    Article  PubMed  Google Scholar 

  24. Schweitzer JA, Ervin M, Berdahl JP (2018) Assessment of corneal hysteresis measured by the ocular response analyzer as a screening tool in patients with glaucoma. Clin Ophthalmol 12:1809–1813. https://doi.org/10.2147/OPTH.S168032

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mangouritsas G, Morphis G, Mourtzoukos S, Feretis E (2009) Association between corneal hysteresis and central corneal thickness in glaucomatous and non-glaucomatous eyes. Acta Ophthalmol 87:901–905. https://doi.org/10.1111/j.1755-3768.2008.01370.x

    Article  PubMed  Google Scholar 

  26. Chee RI, Silva FQ, Ehrlich JR, Radcliffe NM (2013) Agreement of flicker chronoscopy for structural glaucomatous progression detection and factors associated with progression. Am J Ophthalmol 155:983-990.e1. https://doi.org/10.1016/j.ajo.2013.01.005

    Article  PubMed  Google Scholar 

  27. Detry-Morel M, Jamart J, Hautenauven F, Pourjavan S (2012) Comparison of the corneal biomechanical properties with the Ocular Response Analyzer® (ORA) in African and Caucasian normal subjects and patients with glaucoma. Acta Ophthalmol 90:e118–e124. https://doi.org/10.1111/j.1755-3768.2011.02274.x

    Article  PubMed  Google Scholar 

  28. Leite MT, Alencar LM, Gore C et al (2010) Comparison of corneal biomechanical properties between healthy blacks and whites using the Ocular Response Analyzer. Am J Ophthalmol 150:163-168.e1. https://doi.org/10.1016/j.ajo.2010.02.024

    Article  PubMed  PubMed Central  Google Scholar 

  29. Aptel F, Aryal-Charles N, Giraud JM et al (2015) Progression of visual field in patients with primary open-angle glaucoma - ProgF study 1. Acta Ophthalmol 93:e615–e620. https://doi.org/10.1111/aos.12788

    Article  PubMed  Google Scholar 

  30. Vu DM, Silva FQ, Haseltine SJ et al (2013) Relationship between corneal hysteresis and optic nerve parameters measured with spectral domain optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 251:1777–1783. https://doi.org/10.1007/s00417-013-2311-x

    Article  PubMed  Google Scholar 

  31. Lanzagorta-Aresti A, Perez-Lopez M, Palacios-Pozo E, Davo-Cabrera J (2017) Relationship between corneal hysteresis and lamina cribrosa displacement after medical reduction of intraocular pressure. Br J Ophthalmol 101:290–294. https://doi.org/10.1136/bjophthalmol-2015-307428

    Article  PubMed  Google Scholar 

  32. Liu J, He X (2009) Corneal stiffness affects IOP elevation during rapid volume change in the eye. Invest Ophthalmol Vis Sci 50:2224–2229. https://doi.org/10.1167/iovs.08-2365

    Article  PubMed  Google Scholar 

  33. Johnson CS, Mian SI, Moroi S et al (2007) Role of corneal elasticity in damping of intraocular pressure. Invest Ophthalmol Vis Sci 48:2540–2544. https://doi.org/10.1167/iovs.06-0719

    Article  PubMed  Google Scholar 

  34. Yu A-Y, Duan S-F, Zhao Y-E et al (2012) Correlation between corneal biomechanical properties, applanation tonometry and direct intracameral tonometry. Br J Ophthalmol 96:640–646. https://doi.org/10.1136/bjophthalmol-2011-300124

    Article  PubMed  Google Scholar 

  35. Abahussin M, Hayes S, Knox Cartwright NE et al (2009) 3D collagen orientation study of the human cornea using X-ray diffraction and femtosecond laser technology. Invest Opthalmol Vis Sci 50:5159–5164. https://doi.org/10.1167/iovs.09-3669

    Article  Google Scholar 

  36. Susanna BN, Ogata NG, Daga FB et al (2019) Association between rates of visual field progression and intraocular pressure measurements obtained by different tonometers. Ophthalmology 126:49–54. https://doi.org/10.1016/j.ophtha.2018.07.031

    Article  PubMed  Google Scholar 

  37. Sayed MS, Lee RK (2018) Corneal biomechanical properties and their role in glaucoma diagnosis and management. Int Ophthalmol Clin 58:35–49. https://doi.org/10.1097/iio.0000000000000233

    Article  PubMed  Google Scholar 

  38. Tsikripis P, Papaconstantinou D, Koutsandrea C et al (2013) The effect of prostaglandin analogs on the biomechanical properties and central thickness of the cornea of patients with open-angle glaucoma: a 3-year study on 108 eyes. Drug Des Devel Ther 7:1149–1156. https://doi.org/10.2147/DDDT.S50622

    Article  PubMed  PubMed Central  Google Scholar 

  39. Esfandiari H, Efatizadeh A, Hassanpour K et al (2018) Factors associated with lamina cribrosa displacement after trabeculectomy measured by optical coherence tomography in advanced primary open-angle glaucoma. Graefe’s Arch Clin Exp Ophthalmol 256:2391–2398. https://doi.org/10.1007/s00417-018-4135-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria A. Jiménez-Santos.

Ethics declarations

Ethics approval

A cohort study was approved by the Institutional Review Board at the Hospital Clínico San Carlos, and informed consent to access and publication of their clinical records and data selected from it were obtained from all patients. The research was carried out in accordance with the principles of the Helsinki Declaration for medical research involving human subjects.

Conflict of interest

Jimenez, M.: travel reimbursements and speaker fees by Allergan plc, Novartis. Sáenz-Francés, F.: travel reimbursements by Thea, Bausch and Lomb Inc, Allergan plc, consulting fees by Santen. Martínez-de-la-Casa, J.M.: travel reimbursements and speaker fees: Glaukos Corp, Allergan plc, Bausch and Lomb Inc, Zeiss AG, Esteve, Thea, consulting fees by Santen. García Feijóo, J.: travel reimbursements and speaker fees by Zeiss A.G., Heidelberg AG, Novartis AG, Glaukos Inc, Santen. Jáñez-Escalada, L. and Sánchez-Jean, R. declare no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiménez-Santos, M.A., Saénz-Francés, F., Sánchez-Jean, R. et al. Synergic effect of corneal hysteresis and central corneal thickness in the risk of early-stage primary open-angle glaucoma progression. Graefes Arch Clin Exp Ophthalmol 259, 2743–2751 (2021). https://doi.org/10.1007/s00417-021-05212-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-021-05212-1

Keywords

Navigation