Skip to main content

Advertisement

Log in

Automatic detection of leakage point in central serous chorioretinopathy of fundus fluorescein angiography based on time sequence deep learning

  • Medical Ophthalmology
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To detect the leakage points of central serous chorioretinopathy (CSC) automatically from dynamic images of fundus fluorescein angiography (FFA) using a deep learning algorithm (DLA).

Methods

The study included 2104 FFA images from 291 FFA sequences of 291 eyes (137 right eyes and 154 left eyes) from 262 patients. The leakage points were segmented with an attention gated network (AGN). The optic disk (OD) and macula region were segmented simultaneously using a U-net. To reduce the number of false positives based on time sequence, the leakage points were matched according to their positions in relation to the OD and macula.

Results

With the AGN alone, the number of cases whose detection results perfectly matched the ground truth was only 37 out of 61 cases (60.7%) in the test set. The dice on the lesion level were 0.811. Using an elimination procedure to remove false positives, the number of accurate detection cases increased to 57 (93.4%). The dice on the lesion level also improved to 0.949.

Conclusions

Using DLA, the CSC leakage points in FFA can be identified reproducibly and accurately with a good match to the ground truth. This novel finding may pave the way for potential application of artificial intelligence to guide laser therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. Wong KH, Lau KP, Chhablani J, Tao Y, Li Q, Wong IY (2016) Central serous chorioretinopathy: what we have learnt so far. Acta Ophthalmol (Copenh) 94(4):321–325. https://doi.org/10.1111/aos.12779

    Article  Google Scholar 

  2. Daruich A, Matet A, Dirani A, Bousquet E, Zhao M, Farman N, Jaisser F, Behar-Cohen F (2015) Central serous chorioretinopathy: recent findings and new physiopathology hypothesis. Prog Retin Eye Res 48:82–118. https://doi.org/10.1016/j.preteyeres.2015.05.003

    Article  CAS  PubMed  Google Scholar 

  3. Song IS, Shin YU, Lee BR (2012) Time-periodic characteristics in the morphology of idiopathic central serous chorioretinopathy evaluated by volume scan using spectral-domain optical coherence tomography. Am J Ophthalmol 154(2):366–375 e364. https://doi.org/10.1016/j.ajo.2012.02.031

    Article  PubMed  Google Scholar 

  4. Hussain N, Baskar A, Ram LSM, Das T (2006) Optical coherence tomographic pattern of fluorescein angiographic leakage site in acute central serous chorioretinopathy. Clin Experiment Ophthalmol 34(2):137–140. https://doi.org/10.1111/j.1442-9071.2006.1171.x

    Article  PubMed  Google Scholar 

  5. van Rijssen TJ, van Dijk EHC, Yzer S, Ohno-Matsui K, Keunen JEE, Schlingemann RO, Sivaprasad S, Querques G, Downes SM, Fauser S, Hoyng CB, Piccolino FC, Chhablani JK, Lai TYY, Lotery AJ, Larsen M, Holz FG, Freund KB, Yannuzzi LA, Boon CJF (2019) Central serous chorioretinopathy: towards an evidence-based treatment guideline. Prog Retin Eye Res 73:100770. https://doi.org/10.1016/j.preteyeres.2019.07.003

    Article  PubMed  Google Scholar 

  6. Erikitola OC, Crosby-Nwaobi R, Lotery AJ, Sivaprasad S (2014) Photodynamic therapy for central serous chorioretinopathy. Eye 28(8):944–957. https://doi.org/10.1038/eye.2014.134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim KS, Lee WK, Lee SB (2014) Half-dose photodynamic therapy targeting the leakage point on the fluorescein angiography in acute central serous chorioretinopathy: a pilot study. Am J Ophthalmol 157(2):366–373. https://doi.org/10.1016/j.ajo.2013.10.013

    Article  PubMed  Google Scholar 

  8. Burumcek E, Mudun A, Karacorlu S, Arslan MO (1997) Laser photocoagulation for persistent central serous retinopathy. Ophthalmology 104(4):616–622. https://doi.org/10.1016/s0161-6420(97)30262-0

    Article  CAS  PubMed  Google Scholar 

  9. Leaver P, Williams C (1979) Argon laser photocoagulation in the treatment of central serous retinopathy. Br J Ophthalmol 63(10):674–677. https://doi.org/10.1136/bjo.63.10.674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Robertson DM, Ilstrup D (1983) Direct, indirect, and sham laser photocoagulation in the management of central serous chorioretinopathy. Am J Ophthalmol 95(4):457–466. https://doi.org/10.1016/0002-9394(83)90265-9

    Article  CAS  PubMed  Google Scholar 

  11. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R, Raman R, Nelson PC, Mega JL, Webster DR (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22):2402–2410. https://doi.org/10.1001/jama.2016.17216

    Article  PubMed  Google Scholar 

  12. Ting DSW, Cheung CY, Lim G, Tan GSW, Quang ND, Gan A, Hamzah H, Garcia-Franco R, San Yeo IY, Lee SY, Wong EYM, Sabanayagam C, Baskaran M, Ibrahim F, Tan NC, Finkelstein EA, Lamoureux EL, Wong IY, Bressler NM, Sivaprasad S, Varma R, Jonas JB, He MG, Cheng CY, Cheung GCM, Aung T, Hsu W, Lee ML, Wong TY (2017) Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA 318(22):2211–2223. https://doi.org/10.1001/jama.2017.18152

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fleming AD, Goatman KA, Philip S, Williams GJ, Prescott GJ, Scotland GS, McNamee P, Leese GP, Wykes WN, Sharp PF, Olson JA, Scottish Diabetic Retinopathy Clinical Research N (2010) The role of haemorrhage and exudate detection in automated grading of diabetic retinopathy. Br J Ophthalmol 94(6):706–711. https://doi.org/10.1136/bjo.2008.149807

    Article  PubMed  Google Scholar 

  14. Giancardo L, Meriaudeau F, Karnowski TP, Li Y, Garg S, Tobin KW Jr, Chaum E (2012) Exudate-based diabetic macular edema detection in fundus images using publicly available datasets. Med Image Anal 16(1):216–226. https://doi.org/10.1016/j.media.2011.07.004

    Article  PubMed  Google Scholar 

  15. Keel S, Wu J, Lee PY, Scheetz J, He M (2019) Visualizing deep learning models for the detection of referable diabetic retinopathy and glaucoma. JAMA Ophthalmol 137(3):288–292. https://doi.org/10.1001/jamaophthalmol.2018.6035

    Article  PubMed  Google Scholar 

  16. Marin D, Gegundez-Arias ME, Ponte B, Alvarez F, Garrido J, Ortega C, Vasallo MJ, Bravo JM (2018) An exudate detection method for diagnosis risk of diabetic macular edema in retinal images using feature-based and supervised classification. Med Biol Eng Comput 56(8):1379–1390. https://doi.org/10.1007/s11517-017-1771-2

    Article  CAS  PubMed  Google Scholar 

  17. Burlina PM, Joshi N, Pekala M, Pacheco KD, Freund DE, Bressler NM (2017) Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks. JAMA Ophthalmol 135(11):1170–1176. https://doi.org/10.1001/jamaophthalmol.2017.3782

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pead E, Megaw R, Cameron J, Fleming A, Dhillon B, Trucco E, MacGillivray T (2019) Automated detection of age-related macular degeneration in color fundus photography: a systematic review. Surv Ophthalmol 64(4):498–511. https://doi.org/10.1016/j.survophthal.2019.02.003

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ahn JM, Kim S, Ahn KS, Cho SH, Lee KB, Kim US (2018) A deep learning model for the detection of both advanced and early glaucoma using fundus photography. PLoS One 13(11):e0207982. https://doi.org/10.1371/journal.pone.0207982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li Z, He Y, Keel S, Meng W, Chang RT, He M (2018) Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs. Ophthalmology 125(8):1199–1206. https://doi.org/10.1016/j.ophtha.2018.01.023

    Article  PubMed  Google Scholar 

  21. Fang L, Yang L, Li S, Rabbani H, Liu Z, Peng Q, Chen X (2017) Automatic detection and recognition of multiple macular lesions in retinal optical coherence tomography images with multi-instance multilabel learning. J Biomed Opt 22(6):66014. https://doi.org/10.1117/1.JBO.22.6.066014

    Article  PubMed  Google Scholar 

  22. Lu W, Tong Y, Yu Y, Xing Y, Chen C, Shen Y (2018) Deep learning-based automated classification of multi-categorical abnormalities from optical coherence tomography images. Transl Vis Sci Technol 7(6):41. https://doi.org/10.1167/tvst.7.6.41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu YY, Ishikawa H, Chen M, Wollstein G, Duker JS, Fujimoto JG, Schuman JS, Rehg JM (2011) Computerized macular pathology diagnosis in spectral domain optical coherence tomography scans based on multiscale texture and shape features. Invest Ophthalmol Vis Sci 52(11):8316–8322. https://doi.org/10.1167/iovs.10-7012

    Article  PubMed  PubMed Central  Google Scholar 

  24. Srinivasan PP, Kim LA, Mettu PS, Cousins SW, Comer GM, Izatt JA, Farsiu S (2014) Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images. Biomed Opt Express 5(10):3568–3577. https://doi.org/10.1364/BOE.5.003568

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kermany DS, Goldbaum M, Cai W, Valentim CCS, Liang H, Baxter SL, McKeown A, Yang G, Wu X, Yan F, Dong J, Prasadha MK, Pei J, Ting MYL, Zhu J, Li C, Hewett S, Dong J, Ziyar I, Shi A, Zhang R, Zheng L, Hou R, Shi W, Fu X, Duan Y, Huu VAN, Wen C, Zhang ED, Zhang CL, Li O, Wang X, Singer MA, Sun X, Xu J, Tafreshi A, Lewis MA, Xia H, Zhang K (2018) Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172(5):1122–1131 e1129. https://doi.org/10.1016/j.cell.2018.02.010

    Article  CAS  PubMed  Google Scholar 

  26. Khalid S, Akram MU, Hassan T, Jameel A, Khalil T (2018) Automated segmentation and quantification of drusen in fundus and optical coherence tomography images for detection of ARMD. J Digit Imaging 31(4):464–476. https://doi.org/10.1007/s10278-017-0038-7

    Article  PubMed  Google Scholar 

  27. Rabbani H, Allingham MJ, Mettu PS, Cousins SW, Farsiu S (2015) Fully automatic segmentation of fluorescein leakage in subjects with diabetic macular edema. Invest Ophthalmol Vis Sci 56(3):1482–1492. https://doi.org/10.1167/iovs.14-15457

    Article  PubMed  PubMed Central  Google Scholar 

  28. Schlemper J, Oktay O, Schaap M, Heinrich M, Kainz B, Glocker B, Rueckert D (2019) Attention gated networks: learning to leverage salient regions in medical images. Med Image Anal 53:197–207. https://doi.org/10.1016/j.media.2019.01.012

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention. pp 234-241. https://doi.org/10.1007/978-3-319-24574-4_28

  30. Cunefare D, Fang L, Cooper RF, Dubra A, Carroll J, Farsiu S (2017) Open source software for automatic detection of cone photoreceptors in adaptive optics ophthalmoscopy using convolutional neural networks. Sci Rep 7(1):6620. https://doi.org/10.1038/s41598-017-07103-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fang LY, Cunefare D, Wang C, Guymer RH, Li ST, Farsiu S (2017) Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search. Biomed Opt Express 8(5):2732–2744. https://doi.org/10.1364/Boe.8.002732

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lam C, Yu C, Huang L, Rubin D (2018) Retinal lesion detection with deep learning using image patches. Invest Ophthalmol Vis Sci 59(1):590–596. https://doi.org/10.1167/iovs.17-22721

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhao YT, MacCormick IJC, Parry DG, Leach S, Beare NAV, Harding SP, Zheng YL (2015) Automated detection of leakage in fluorescein angiography images with application to malarial retinopathy. Sci Rep 5. https://doi.org/10.1038/srep10425

  34. Phillips RP, Ross PG, Tyska M, Sharp PF, Forrester JV (1991) Detection and quantification of hyperfluorescent leakage by computer analysis of fundus fluorescein angiograms. Graefe's Archive for Clinical and Experimental Ophthalmology 229(4):329–335

    Article  CAS  Google Scholar 

  35. Phillips RP, Spencer T, Ross PGB, Sharp PF, Forrester JV (1991) Quantification of diabetic maculopathy by digital imaging of the fundus. Eye (Lond) 5:130–137

    Article  Google Scholar 

  36. Kernt M, Cheuteu R, Vounotrypidis E, Haritoglou C, Kampik A, Ulbig MW, Neubauer AS (2011) Focal and panretinal photocoagulation with a navigated laser (NAVILAS(R)). Acta Ophthalmol (Copenh) 89(8):e662–e664. https://doi.org/10.1111/j.1755-3768.2010.02017.x

    Article  Google Scholar 

  37. Kozak I, Oster SF, Cortes MA, Dowell D, Hartmann K, Kim JS, Freeman WR (2011) Clinical evaluation and treatment accuracy in diabetic macular edema using navigated laser photocoagulator NAVILAS. Ophthalmology 118(6):1119–1124. https://doi.org/10.1016/j.ophtha.2010.10.007

    Article  PubMed  Google Scholar 

  38. Kernt M, Cheuteu R, Liegl RG, Seidensticker F, Cserhati S, Hirneiss C, Haritoglou C, Kampik A, Ulbig M, Neubauer AS (2012) Navigated focal retinal laser therapy using the NAVILAS(R) system for diabetic macula edema. Ophthalmologe 109(7):692–698. https://doi.org/10.1007/s00347-012-2559-2

    Article  CAS  PubMed  Google Scholar 

  39. Muller B, Tatsios J, Klonner J, Pilger D, Joussen AM (2018) Navigated laser photocoagulation in patients with non-resolving and chronic central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol 256(9):1581–1588. https://doi.org/10.1007/s00417-018-4031-8

    Article  PubMed  Google Scholar 

Download references

Funding

Supported by the National Key Research and Development Program of China (2019YFC0118401), Zhejiang Provincial Key Research and Development Plan (2019C03020), and the Natural Science Foundation of China (81670888). The authors alone are responsible for the content and writing of the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Wu or Juan Ye.

Ethics declarations

Ethics approval and consent to participate

This study was conducted in compliance with the principles of the Declaration of Helsinki and was approved by the Medical Ethics Committee of the Second Affiliated Hospital, Zhejiang University School of Medicine. Informed consent was obtained from the research subjects prior to the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of a Topical Collection on Breakthroughs in Artificial Intelligence for Ophthalmology.

Supplementary Information

ESM 1

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Jin, K., You, K. et al. Automatic detection of leakage point in central serous chorioretinopathy of fundus fluorescein angiography based on time sequence deep learning. Graefes Arch Clin Exp Ophthalmol 259, 2401–2411 (2021). https://doi.org/10.1007/s00417-021-05151-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-021-05151-x

Keywords

Navigation