Skip to main content

Advertisement

Log in

Variation of vortex veins at the horizontal watershed in normal eyes

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To assess the vascular pattern of choroidal vortex veins at the horizontal watershed zone in normal eyes using optical coherence tomography (OCT).

Methods

We retrospectively studied 207 normal eyes of 207 patients whose fellow eyes were diagnosed with unilateral retinal diseases without choroidal involvement. Venous anastomosis between the superior and inferior vortex veins and deviation of the horizontal watershed zone were evaluated using 12 × 12-mm en face OCT images. Central choroidal thickness (CCT) was measured on B-mode OCT images.

Results

Vortex vein anastomosis was observed in 92 eyes (44.4%) at the horizontal watershed zone. Superior or inferior deviation of the horizontal watershed was ascertained in 69 eyes (33.3%). The frequency of the anastomosis and deviation did not differ significantly between age groups (P = 0.56 and 0.96, respectively). Mean CCT of all eyes was 221 ± 80 μm. CCT was significantly greater in eyes with anastomosis than in those without (233 ± 73 μm vs 210 ± 83 μm, P < 0.05). However, CCT did not differ significantly between eyes with and without deviation of the horizontal watershed zone (223 ± 74 μm vs 219 ± 82 μm).

Conclusions

Venous anastomosis at the horizontal watershed zone as well as superior or inferior deviation of the zone were frequently observed in normal eyes. CCT was greater in eyes with than in those without anastomosis, suggesting subclinical vortex vein congestion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hayreh SS (1974) The choriocapillaris. Albrecht Von Graefes Arch Klin Exp Ophthalmol 192:165–179. https://doi.org/10.1007/BF00416864

    Article  CAS  PubMed  Google Scholar 

  2. Hayreh SS, Baines JA (1973) Occlusion of the vortex veins. An experimental study. Br J Ophthalmol 57:217–238. https://doi.org/10.1136/bjo.57.4.217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Iida T, Kishi S, Hagimura N, Shimizu K (1999) Persistent and bilateral choroidal vascular abnormalities in central serous chorioretinopathy. Retina 19:508–512. https://doi.org/10.1097/00006982-199911000-00005

    Article  CAS  PubMed  Google Scholar 

  4. Yannuzzi LA, Wong DW, Sforzolini BS et al (1999) Polypoidal choroidal vasculopathy and neovascularized age-related macular degeneration. Arch Ophthalmol 117:1503–1510. https://doi.org/10.1001/archopht.117.11.1503

    Article  CAS  PubMed  Google Scholar 

  5. Mori K, Gehlbach PL, Yoneya S, Shimizu K (2004) Asymmetry of choroidal venous vascular patterns in the human eye. Ophthalmology 111:507–512. https://doi.org/10.1016/j.ophtha.2003.06.009

    Article  PubMed  Google Scholar 

  6. Spaide RF, Koizumi H, Pozzoni MC (2008) Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 146:496–500. https://doi.org/10.1016/j.ajo.2008.05.032

    Article  PubMed  Google Scholar 

  7. Kishi S (2016) Impact of swept source optical coherence tomography on ophthalmology. Taiwan J Ophthalmol 6:58–68. https://doi.org/10.1016/j.tjo.2015.09.002

    Article  PubMed  Google Scholar 

  8. Imamura Y, Fujiwara T, Margolis R, Spaide RF (2009) Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina 29:1469–1473. https://doi.org/10.1097/IAE.0b013e3181be0a83

    Article  PubMed  Google Scholar 

  9. Maruko I, Iida T, Sugano Y, Ojima A, Ogasawara M, Spaide RF (2010) Subfoveal choroidal thickness after treatment of central serous chorioretinopathy. Ophthalmology 117:1792–1799. https://doi.org/10.1016/j.ophtha.2010.01.023

    Article  PubMed  Google Scholar 

  10. Maruko I, Iida T, Sugano Y, Oyamada H, Sekiryu T, Fujiwara T, Spaide RF (2011) Subfoveal choroidal thickness after treatment of Vogt-Koyanagi-Harada disease. Retina 31:510–517. https://doi.org/10.1097/IAE.0b013e3181eef053

    Article  PubMed  Google Scholar 

  11. Margolis R, Spaide RF (2009) A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. Am J Ophthalmol 147:811–815. https://doi.org/10.1016/j.ajo.2008.12.008

    Article  PubMed  Google Scholar 

  12. Ikuno Y, Kawaguchi K, Nouchi T, Yasuno Y (2010) Choroidal thickness in healthy Japanese subjects. Invest Ophthalmol Vis Sci 51:2173–2176. https://doi.org/10.1167/iovs.09-4383

    Article  PubMed  Google Scholar 

  13. Gallego-Pinazo R, Dolz-Marco R, Gomez-Ulla F, Mrejen S, Freund KB (2014) Pachychoroid diseases of the macula. Med Hypothesis Discov Innov Ophthalmol 3:111–115

    PubMed  PubMed Central  Google Scholar 

  14. Warrow DJ, Hoang QV, Freund KB (2013) Pachychoroid pigment epitheliopathy. Retina 33:1659–1672. https://doi.org/10.1097/IAE.0b013e3182953df4

    Article  PubMed  Google Scholar 

  15. Savastano MC, Rispoli M, Savastano A, Lumbroso B (2015) En face optical coherence tomography for visualization of the choroid. Ophthalmic Surg Lasers Imaging Retina 46:561–565. https://doi.org/10.3928/23258160-20150521-07

    Article  PubMed  Google Scholar 

  16. Savastano MC, Dansingani KK, Rispoli M, Virgili G, Savastano A, Freund KB, Lumbroso B (2018) Classification of Haller vessel arrangements in acute and chronic central serous chorioretinopathy imaged with en face optical coherence tomography. Retina 38:1211–1215. https://doi.org/10.1097/IAE.0000000000001678

    Article  PubMed  Google Scholar 

  17. Hiroe T, Kishi S (2018) Dilatation of asymmetric vortex vein in central serous chorioretinopathy. Ophthalmol Retina 2:152–161. https://doi.org/10.1016/j.oret.2017.05.013

    Article  PubMed  Google Scholar 

  18. Kishi S, Matsumoto H, Sonoda S, Hiroe T, Sakamoto T, Akiyama H (2018) Geographic filling delay of the choriocapillaris in the region of dilated asymmetric vortex veins in central serous chorioretinopathy. PLoS One 13:e0206646. https://doi.org/10.1371/journal.pone.0206646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shiihara H, Sakamoto T, Terasaki H, Kakiuchi N, Shinohara Y, Tomita M, Sonoda S (2019) Running pattern of choroidal vessel in en face OCT images determined by machine learning-based quantitative method. Graefes Arch Clin Exp Ophthalmol 257:1879–1887. https://doi.org/10.1007/s00417-019-04399-8

    Article  PubMed  Google Scholar 

  20. Matsumoto H, Kishi S, Mukai R, Akiyama H (2019) Remodeling of macular vortex veins in pachychoroid neovasculopathy. Sci Rep 9:14689. https://doi.org/10.1038/s41598-019-51268-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Matsumoto H, Hoshino J, Mukai R, Nakamura K, Kikuchi Y, Kishi S, Akiyama H (2020) Vortex vein anastomosis at the watershed in pachychoroid spectrum diseases. Ophthalmol Retina. https://doi.org/10.1016/j.oret.2020.03.024

  22. Ferris FL, Davis MD, Clemons TE et al (2005) A simplified severity scale for age-related macular degeneration: AREDS report no. 18. Arch Ophthalmol 123:1570–1574. https://doi.org/10.1001/archopht.123.11.1570

    Article  PubMed  Google Scholar 

  23. Yanai H (2015) Statcel-the useful add-in software forms on Excel, 4th edn. OMS, Tokyo

    Google Scholar 

  24. Okada H, Sano T, Yoneda M, Miki H (1985) Experimental study on the development of collateral shunt vessels following anterior uveal circulatory disturbances in the rabbit eye. 2. Occlusion of the vortex veins. Nippon Ganka Gakkai Zasshi 89:885–894

    CAS  PubMed  Google Scholar 

  25. Takahashi K, Kishi S (2000) Remodeling of choroidal venous drainage after vortex vein occlusion following scleral buckling for retinal detachment. Am J Ophthalmol 129:191–198. https://doi.org/10.1016/s0002-9394(99)00425-0

    Article  CAS  PubMed  Google Scholar 

  26. Takahashi K, Kishi S, Muraoka K, Tanaka T, Shimizu K (1998) Radiation choroidopathy with remodeling of the choroidal venous system. Am J Ophthalmol 125:367–373. https://doi.org/10.1016/s0002-9394(99)80148-2

    Article  CAS  PubMed  Google Scholar 

  27. Hayreh SS (1975) Segmental nature of the choroidal vasculature. Br J Ophthalmol 59:631–648. https://doi.org/10.1136/bjo.59.11.631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Oyster CW (1999) The human eye: structure and function. Sinauer Associates, Sunderland, MA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors were involved in the following aspects of the study: design and conduct (J.H., H.M., S.K.), collection of the data (J.H., K.N., Y.A., Y.K.), management (H.M.), analysis (J.H., H.M.), interpretation (J.H., H.M.), preparation of article (J.H., H.M.), and review and approval of the manuscript (R.M., S.K., H.A.).

Corresponding author

Correspondence to Hidetaka Matsumoto.

Ethics declarations

Ethics approval and consent to participate

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This study was performed with approval from the institutional review board of Gunma University School of Medicine. Informed consent was obtained from all individual participants included in the study.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoshino, J., Matsumoto, H., Mukai, R. et al. Variation of vortex veins at the horizontal watershed in normal eyes. Graefes Arch Clin Exp Ophthalmol 259, 2175–2180 (2021). https://doi.org/10.1007/s00417-021-05130-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-021-05130-2

Keywords

Navigation