Skip to main content

Advertisement

Log in

Changes in choroidal imaging parameters following adalimumab therapy for refractory noninfectious uveitis

  • Inflammatory Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the short-term change in choroidal structure following adalimumab (ADA) treatment in refractory noninfectious uveitis.

Methods

This was a retrospective study of 33 eyes from 18 patients with refractory noninfectious uveitis. Subfoveal choroidal thickness (SFCT), the choroidal stromal index (CSI) defined as the proportion of stromal area to the total choroidal area were used as choroidal imaging parameters and were evaluated by enhanced depth imaging optical coherence tomography (EDI-OCT). The change in these parameters in the 2 months following initiation of ADA was analysed. A linear mixed-effect model was used to assess the effect of ADA treatment.

Results

The causes of uveitis were Vogt-Koyanagi-Harada disease (VKHD) (42.4%), presumed autoimmune retinopathy (15.2%), others (12.1%) and unclassified (30.3%). In the analysis of all eyes, the SFCT was 309.7 ± 113.1 μm at baseline, 295.7 ± 114.5 μm at 1 month and 275.2 ± 98.8 μm at 2 months after ADA initiation (P < 0.001). The CSI was 0.275 ± 0.050 at baseline, 0.273 ± 0.068 at 1 month and 0.273 ± 0.046 at 2 months (P = 0.785). In the subgroup analysis, the SFCT decreased significantly from baseline to 2 months in VKHD eyes (P = 0.007) and unclassified eyes (P = 0.034). There was no significant change in CSI in either subgroup.

Conclusions

In the assessment of short-term response to ADA treatment in uveitic eyes, using EDI-OCT, the SFCT appears to be more effective as a choroidal imaging biomarker than the CSI, especially in VKHD eyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jaffe GJ, Dick AD, Brezin AP, Nguyen QD, Thorne JE, Kestelyn P, Barisani-Asenbauer T, Franco P, Heiligenhaus A, Scales D, Chu DS, Camez A, Kwatra NV, Song AP, Kron M, Tari S, Suhler EB (2016) Adalimumab in patients with active noninfectious uveitis. N Engl J Med 375(10):932–943. https://doi.org/10.1056/NEJMoa1509852

    Article  CAS  PubMed  Google Scholar 

  2. Nguyen QD, Merrill PT, Jaffe GJ, Dick AD, Kurup SK, Sheppard J, Schlaen A, Pavesio C, Cimino L, Van Calster J, Camez AA, Kwatra NV, Song AP, Kron M, Tari S, Brézin AP (2016) Adalimumab for prevention of uveitic flare in patients with inactive non-infectious uveitis controlled by corticosteroids (VISUAL II): a multicentre, double-masked, randomised, placebo-controlled phase 3 trial. Lancet 388(10050):1183–1192. https://doi.org/10.1016/s0140-6736(16)31339-3

    Article  CAS  PubMed  Google Scholar 

  3. Suhler EB, Adan A, Brezin AP, Fortin E, Goto H, Jaffe GJ, Kaburaki T, Kramer M, Lim LL, Muccioli C, Nguyen QD, Van Calster J, Cimino L, Kron M, Song AP, Liu J, Pathai S, Camez A, Schlaen A, van Velthoven MEJ, Vitale AT, Zierhut M, Tari S, Dick AD (2018) Safety and efficacy of Adalimumab in patients with noninfectious uveitis in an ongoing open-label study: VISUAL III. Ophthalmology 125(7):1075–1087. https://doi.org/10.1016/j.ophtha.2017.12.039

    Article  PubMed  Google Scholar 

  4. Jabs DA, Nussenblatt RB, Rosenbaum JT, Standardization of Uveitis Nomenclature Working Group (2005) Standardization of uveitis nomenclature for reporting clinical data. Results of the first international workshop. Am J Ophthalmol 140(3):509–516. https://doi.org/10.1016/j.ajo.2005.03.057

    Article  PubMed  Google Scholar 

  5. Deak GG, Zhou M, Sporysheva A, Goldstein DA (2020) Novel imaging modalities in patients with uveitis. Can J Ophthalmol 55(1):20–29. https://doi.org/10.1016/j.jcjo.2019.06.005

    Article  PubMed  Google Scholar 

  6. Nickla DL, Wallman J (2010) The multifunctional choroid. Prog Retin Eye Res 29(2):144–168. https://doi.org/10.1016/j.preteyeres.2009.12.002

    Article  PubMed  Google Scholar 

  7. Pichi F, Invernizzi A, Tucker WR, Munk MR (2020) Optical coherence tomography diagnostic signs in posterior uveitis. Prog Retin Eye Res 75:100797. https://doi.org/10.1016/j.preteyeres.2019.100797

    Article  PubMed  Google Scholar 

  8. Spaide RF, Koizumi H, Pozzoni MC (2008) Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 146(4):496–500. https://doi.org/10.1016/j.ajo.2008.05.032

    Article  PubMed  Google Scholar 

  9. Staurenghi G, Sadda S, Chakravarthy U, Spaide RF, International Nomenclature for Optical Coherence Tomography Panel (2014) Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography: the IN*OCT consensus. Ophthalmology 121(8):1572–1578. https://doi.org/10.1016/j.ophtha.2014.02.023

    Article  PubMed  Google Scholar 

  10. Nakai K, Gomi F, Ikuno Y, Yasuno Y, Nouchi T, Ohguro N, Nishida K (2012) Choroidal observations in Vogt-Koyanagi-Harada disease using high-penetration optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 250(7):1089–1095. https://doi.org/10.1007/s00417-011-1910-7

    Article  PubMed  Google Scholar 

  11. Goldenberg D, Goldstein M, Loewenstein A, Habot-Wilner Z (2013) Vitreal, retinal, and choroidal findings in active and scarred toxoplasmosis lesions: a prospective study by spectral-domain optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 251(8):2037–2045. https://doi.org/10.1007/s00417-013-2334-3

    Article  PubMed  Google Scholar 

  12. Invernizzi A, Mapelli C, Viola F, Cigada M, Cimino L, Ratiglia R, Staurenghi G, Gupta A (2015) Choroidal granulomas visualized by enhanced depth imaging optical coherence tomography. Retina 35(3):525–531. https://doi.org/10.1097/IAE.0000000000000312

    Article  PubMed  Google Scholar 

  13. Agrawal R, Salman M, Tan KA, Karampelas M, Sim DA, Keane PA, Pavesio C (2016) Choroidal vascularity index (CVI)--a novel optical coherence tomography parameter for monitoring patients with Panuveitis? PLoS One 11(1):e0146344. https://doi.org/10.1371/journal.pone.0146344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Egawa M, Mitamura Y, Akaiwa K, Semba K, Kinoshita T, Uchino E, Sonoda S, Sakamoto T (2016) Changes of choroidal structure after corticosteroid treatment in eyes with Vogt-Koyanagi-Harada disease. Br J Ophthalmol 100(12):1646–1650. https://doi.org/10.1136/bjophthalmol-2015-307734

    Article  PubMed  Google Scholar 

  15. Kawano H, Sonoda S, Yamashita T, Maruko I, Iida T, Sakamoto T (2016) Relative changes in luminal and stromal areas of choroid determined by binarization of EDI-OCT images in eyes with Vogt-Koyanagi-Harada disease after treatment. Graefes Arch Clin Exp Ophthalmol 254(3):421–426. https://doi.org/10.1007/s00417-016-3283-4

    Article  PubMed  Google Scholar 

  16. Tagawa Y, Namba K, Mizuuchi K, Takemoto Y, Iwata D, Uno T, Fukuhara T, Hirooka K, Kitaichi N, Ohno S, Ishida S (2016) Choroidal thickening prior to anterior recurrence in patients with Vogt-Koyanagi-Harada disease. Br J Ophthalmol 100(4):473–477. https://doi.org/10.1136/bjophthalmol-2014-306439

    Article  PubMed  Google Scholar 

  17. Skvortsova N, Gasc A, Jeannin B, Herbort CP (2017) Evolution of choroidal thickness over time and effect of early and sustained therapy in birdshot retinochoroiditis. Eye (Lond) 31(8):1205–1211. https://doi.org/10.1038/eye.2017.54

    Article  CAS  Google Scholar 

  18. No authors listed (1990) Criteria for diagnosis of Behcet’s disease. International Study Group for Behcet’s Disease 367. Lancet 335(8697):1078–1080

    Google Scholar 

  19. Read RW, Holland GN, Rao NA, Tabbara KF, Ohno S, Arellanes-Garcia L, Pivetti-Pezzi P, Tessler HH, Usui M (2001) Revised diagnostic criteria for Vogt-Koyanagi-Harada disease: report of an international committee on nomenclature. Am J Ophthalmol 131(5):647–652. https://doi.org/10.1016/s0002-9394(01)00925-4

    Article  CAS  PubMed  Google Scholar 

  20. Ohguro N, Sonoda KH, Takeuchi M, Matsumura M, Mochizuki M (2012) The 2009 prospective multi-center epidemiologic survey of uveitis in Japan. Jpn J Ophthalmol 56(5):432–435. https://doi.org/10.1007/s10384-012-0158-z

    Article  PubMed  Google Scholar 

  21. Mochizuki M, Smith JR, Takase H, Kaburaki T, Acharya NR, Rao NA, International Workshop on Ocular Sarcoidosis Study Group (2019) Revised criteria of International Workshop on Ocular Sarcoidosis (IWOS) for the diagnosis of ocular sarcoidosis. Br J Ophthalmol 103(10):1418–1422. https://doi.org/10.1136/bjophthalmol-2018-313356

    Article  PubMed  Google Scholar 

  22. Fox AR, Gordon LK, Heckenlively JR, Davis JL, Goldstein DA, Lowder CY, Nussenblatt RB, Butler NJ, Dalal M, Jayasundera T, Smith WM, Lee RW, Adamus G, Chan CC, Hooks JJ, Morgans CW, Detrick B, Sen HN (2016) Consensus on the diagnosis and management of nonparaneoplastic autoimmune retinopathy using a modified Delphi approach. Am J Ophthalmol 168:183–190. https://doi.org/10.1016/j.ajo.2016.05.013

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sonoda S, Sakamoto T, Yamashita T, Uchino E, Kawano H, Yoshihara N, Terasaki H, Shirasawa M, Tomita M, Ishibashi T (2015) Luminal and stromal areas of choroid determined by binarization method of optical coherence tomographic images. Am J Ophthalmol 159(6):1123–1131 e1121. https://doi.org/10.1016/j.ajo.2015.03.005

    Article  PubMed  Google Scholar 

  24. Nussenblatt RB, Palestine AG, Chan CC, Roberge F (1985) Standardization of vitreal inflammatory activity in intermediate and posterior uveitis. Ophthalmology 92(4):467–471. https://doi.org/10.1016/s0161-6420(85)34001-0

    Article  CAS  PubMed  Google Scholar 

  25. Tsirouki T, Dastiridou A, Symeonidis C, Tounakaki O, Brazitikou I, Kalogeropoulos C, Androudi S (2018) A focus on the epidemiology of uveitis. Ocul Immunol Inflamm 26(1):2–16. https://doi.org/10.1080/09273948.2016.1196713

    Article  PubMed  Google Scholar 

  26. Al-Janabi A, El Nokrashy A, Sharief L, Nagendran V, Lightman S, Tomkins-Netzer O (2020) Long-term outcomes of treatment with biological agents in eyes with refractory, active, noninfectious intermediate uveitis, posterior uveitis, or Panuveitis. Ophthalmology 127(3):410–416. https://doi.org/10.1016/j.ophtha.2019.08.031

    Article  PubMed  Google Scholar 

  27. Singh SR, Vupparaboina KK, Goud A, Dansingani KK, Chhablani J (2019) Choroidal imaging biomarkers. Surv Ophthalmol 64(3):312–333. https://doi.org/10.1016/j.survophthal.2018.11.002

    Article  PubMed  Google Scholar 

  28. Pirani V, Pelliccioni P, De Turris S, Rosati A, Franceschi A, Pasanisi P, Gesuita R, Nicolai M, Mariotti C (2020) Intraocular inflammation control and changes in retinal and choroidal architecture in refractory non-infectious uveitis patients after adalimumab therapy. J Clin Med 9(2). https://doi.org/10.3390/jcm9020510

  29. Maruko I, Iida T, Sugano Y, Oyamada H, Sekiryu T, Fujiwara T, Spaide RF (2011) Subfoveal choroidal thickness after treatment of Vogt-Koyanagi-Harada disease. Retina 31(3):510–517. https://doi.org/10.1097/IAE.0b013e3181eef053

    Article  PubMed  Google Scholar 

  30. Nakayama M, Keino H, Okada AA, Watanabe T, Taki W, Inoue M, Hirakata A (2012) Enhanced depth imaging optical coherence tomography of the choroid in Vogt-Koyanagi-Harada disease. Retina 32(10):2061–2069. https://doi.org/10.1097/IAE.0b013e318256205a

    Article  PubMed  Google Scholar 

  31. da Silva FT, Sakata VM, Nakashima A, Hirata CE, Olivalves E, Takahashi WY, Costa RA, Yamamoto JH (2013) Enhanced depth imaging optical coherence tomography in long-standing Vogt-Koyanagi-Harada disease. Br J Ophthalmol 97(1):70–74. https://doi.org/10.1136/bjophthalmol-2012-302089

    Article  PubMed  Google Scholar 

  32. Agrawal R, Li LK, Nakhate V, Khandelwal N, Mahendradas P (2016) Choroidal vascularity index in Vogt-Koyanagi-Harada disease: an EDI-OCT derived tool for monitoring disease progression. Transl Vis Sci Technol 5(4):7. https://doi.org/10.1167/tvst.5.4.7

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sentaro Kusuhara.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional review board (Kobe University Graduate School of Medicine) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Subject’s informed consent was not required since this was a retrospective review.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(JPG 53 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishisho, R., Kusuhara, S., Sotani, N. et al. Changes in choroidal imaging parameters following adalimumab therapy for refractory noninfectious uveitis. Graefes Arch Clin Exp Ophthalmol 259, 1273–1280 (2021). https://doi.org/10.1007/s00417-020-05032-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-020-05032-9

Keywords

Navigation