Skip to main content

Advertisement

Log in

Optic nerve head diurnal vessel density variations in glaucoma and ocular hypertension measured by optical coherence tomography angiography

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background/aims

To evaluate diurnal variations in optic nerve head (ONH) vessel density assessed by optical coherence tomography angiography (OCT-A) in healthy subjects, ocular hypertension (OHT), and open-angle glaucoma (OAG) patients.

Methods

Forty subjects (OAG, 21; OHT, 6; healthy, 13) were assessed for vessel density percentage (VD%) and flow index in the ONH (NH VD%, NH index), and in the radial peripapillary capillary layer (RPC VD%, RPC index) at 9:00, 11:00, 14:00, 16:00, and 18:00 on a single day. Repeated measures ANOVAs were used to test for changes in the parameters measured at multiple time points.

Results

All OCT-A parameters analyzed at the different time points were statistically lower in the OAG patients compared to both the OHT and healthy groups (p < 0.05). In the OAG group, the NH index, RPC index, NH VD%, and RPC VD% were statistically lower at 18:00 compared to 14:00, and the RPC VD% was statistically lower at 9:00 than 14:00. In the OHT group, the RPC index was statistically lower at 9:00 than 11:00. In the healthy group, the NH VD% and RPC VD% were statistically lower at 16:00 than 18:00, and the RPC index was statistically lower at 9:00 than 11:00. No other statistically significant difference was found in none of the three groups comparing any other time point (p > 0.05).

Conclusion

In healthy subjects, OHT and OAG patients, the variations in the OCT-A derived parameters were relatively small. These results suggest that in the clinical practice the OCT-A assessment can be performed independently of the time of the day, contrasting IOP evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Quigley HA, Broman AT (2006) The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90(3):262–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Medeiros FA (2010) Glaucoma risk factors: fluctuations in intraocular pressure. In: Schacknow PN, Samples JR (eds) The glaucoma Book: a practical, evidence-based approach to patient care. Springer-Verlag, New York, pp 51–54

  3. Chung HS, Harris A, Kagemann L, Martin B (1999) Peripapillary retinal blood flow in normal tension glaucoma. Br J Ophthalmol 83(4):466–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yin ZQ, Vaegan MTJ, Beaumont P, Sarks S (1997) Widespread choroidal insufficiency in primary open-angle glaucoma. J Glaucoma 6(1):23–32

    Article  CAS  PubMed  Google Scholar 

  5. Galassi F, Sodi A, Ucci F, Renieri G, Pieri B, Baccini M (2003) Ocular hemodynamics and glaucoma prognosis: a color Doppler imaging study. Arch Ophthalmol 121(12):1711–1715

    Article  PubMed  Google Scholar 

  6. Satilmis M, Orgul S, Doubler B, Flammer J (2003) Rate of progression of glaucoma correlates with retrobulbar circulation and intraocular pressure. Am J Ophthalmol 135(5):664–669

    Article  PubMed  Google Scholar 

  7. Akil H, Huang AS, Francis BA, Sadda SR, Chopra V (2017) Retinal vessel density from optical coherence tomography angiography to differentiate early glaucoma, pre-perimetric glaucoma and normal eyes. PLoS One 12(2):e0170476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Chen HS, Liu CH, Wu WC, Tseng HJ, Lee YS (2017) Optical coherence tomography angiography of the superficial microvasculature in the macular and peripapillary areas in glaucomatous and healthy eyes. Invest Ophthalmol Vis Sci 58(9):3637–3645

    Article  PubMed  Google Scholar 

  9. Gong J, Yu S, Gong Y, Wang F, Sun X (2016) The diagnostic accuracy of optical coherence tomography angiography for neovascular age-related macular degeneration: a comparison with fundus fluorescein angiography. J Ophthalmol 2016:7521478

    Article  PubMed  PubMed Central  Google Scholar 

  10. Koustenis A Jr, Harris A, Gross J, Januleviciene I, Shah A, Siesky B (2017) Optical coherence tomography angiography: an overview of the technology and an assessment of applications for clinical research. Br J Ophthalmol 101(1):16–20

    Article  PubMed  Google Scholar 

  11. Mansoori T, Sivaswamy J, Gamalapati JS, Balakrishna N (2017) Radial Peripapillary capillary density measurement using optical coherence tomography angiography in early Glaucoma. J Glaucoma 26(5):438–443

    Article  PubMed  Google Scholar 

  12. Triolo G, Rabiolo A, Shemonski ND et al (2017) Optical coherence tomography angiography macular and peripapillary vessel perfusion density in healthy subjects, glaucoma suspects, and glaucoma patients. Invest Ophthalmol Vis Sci 58(13):5713–5722

    Article  PubMed  Google Scholar 

  13. Yarmohammadi A, Zangwill LM, Diniz-Filho A et al (2016a) Relationship between optical coherence tomography angiography vessel density and severity of visual field loss in glaucoma. Ophthalmology 123(2):2498–2508

    Article  PubMed  Google Scholar 

  14. Yarmohammadi A, Zangwill LM, Diniz-Filho A et al (2016b) Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes. Invest Ophthalmol Vis Sci 57(9):451–459

    Article  Google Scholar 

  15. Quaranta L, Katsanos A, Russo A, Riva I (2013) 24-hour intraocular pressure and ocular perfusion pressure in glaucoma. Surv Ophthalmol 58(1):26–41

    Article  PubMed  Google Scholar 

  16. Furlan R, Guzzetti S, Crivellaro W et al (1990) Continuous 24-hour assessment of the neural regulation of systemic arterial pressure and RR variabilities in ambulant subjects. Circulation 81(2):537–547

    Article  CAS  PubMed  Google Scholar 

  17. Dodt C, Breckling U, Derad I (1997) Plasma epinephrine and norepinephrine concentrations of healthy humans associated with nighttime sleep and morning arousal. Hypertension 30(1):71–76

    Article  CAS  PubMed  Google Scholar 

  18. Shimada K, Kario K, Umeda Y, Hoshide S, Hoshide Y, Eguchi K (2001) Early morning surge in blood pressure. Blood Press Monit 6(6):349–353

    Article  CAS  PubMed  Google Scholar 

  19. Huang J, Katalinic P, Kalloniatis M, Hennessy MP, Zangerl B (2018) Diurnal intraocular pressure fluctuations with self-tonometry in glaucoma patients and suspects: a clinical trial. Optom Vis Sci 95(2):88–95

    Article  PubMed  PubMed Central  Google Scholar 

  20. Garzon-Ariza A, Guisado A, Galan A (2018) Diurnal variations in intraocular pressure and central corneal thickness and the correlation between these factors in dogs. Vet Ophthalmol 21(5):464–470

    Article  PubMed  Google Scholar 

  21. Gao K, Li F, Aung T, Zhang X (2017) Diurnal variations in the morphology of Schlemm’s canal and intraocular pressure in healthy Chinese: an SS-OCT study. Invest Ophthalmol Vis Sci 58(13):5777–5782

    Article  PubMed  Google Scholar 

  22. Tan S, Baig N, Hansapiny L, Jhanji V, Wei S, Tham CC (2017) Comparison of self-measured diurnal intraocular pressure profiles using rebound tonometry between primary angle closure glaucoma and primary open angle glaucoma patients. PLoS One 12(3):e0173905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Nau CB, Malihi M, McLaren JW, Hodge DO, Sit AJ (2013) Circadian variation of aqueous humor dynamics in older healthy adults. Invest Ophthalmol Vis Sci 54(12):7623–7629

    PubMed  PubMed Central  Google Scholar 

  24. Liu JH, Zhang X, Kripke DF, Weinreb RN (2003) Twenty-four-hour intraocular pressure pattern associated with early glaucomatous changes. Invest Ophthalmol Vis Sci 44(4):1586–1590

    Article  PubMed  Google Scholar 

  25. Quaranta L, Katsanos A, Riva I, Dastiridou A, Oddone F, Roberti G, Konstas AGP (2016) Twenty-four-hour intraocular pressure and and ocular perfusion pressure characteristics in newly diagnosed patients with normal tension glaucoma. Eye (Lond) 30(11):1481–1489

    Article  CAS  Google Scholar 

  26. Liang YB, Zhou Q, Friedman DS, Guo LX, Sun LP, Zong QF, Yang XD, Wang NL (2016) A population-based assessment of 24 hour ocular perfusion pressure among patients with primary open angle glaucoma: the Handan eye study. Asia Pac J Ophthalmol (Philia) 5(2):127–132

    Article  Google Scholar 

  27. Okuno T, Sugiyama T, Kojima S, Nakajima M, Ikeda T (2004) Diurnal variation in microcirculation of ocular fundus and visual field change in normal-tension glaucoma. Eye (Lond) 18(7):697–702

    Article  CAS  Google Scholar 

  28. Pemp B, Georgopoulos M, Vass C, Fuchsjäger-Mayrl G, Luksch A, Rainer G, Schmetterer L (2009) Diurnal fluctuation of ocular blood flow parameters in patients with primary open-angle glaucoma and healthy subjects. Br J Ophthalmol 93(4):486–489

    Article  CAS  PubMed  Google Scholar 

  29. Mansouri K, Rao HL, Hoskens K, D'Alessandro E, Flores-Reyes EM, Mermoud A, Weinreb RN (2018) Diurnal variations of peripapillary and macular vessel density in glaucomatous eyes using optical coherence tomography angiography. J Glaucoma 27(4):336–341

    Article  PubMed  Google Scholar 

  30. Müller VC, Storp JJ, Kerschke L, Nelis P, Eter N, Alnawaiseh M (2019) Diurnal variations in flow density measured using optical coherence tomography angiography and the impact of heart rate, mean arterial pressure and intraocular pressure on flow density in primary open-angle glaucoma patients. Acta Ophthalmol 97(6):e844–e849. https://doi.org/10.1111/aos.14089

    Article  PubMed  Google Scholar 

  31. Baek SU, Kim YK, Ha A, Kim YW, Lee J, Kim JS, Jeoung JW, Park KH (2019) Diurnal change of retinal vessel density and mean ocular perfusion pressure in patients with open-angle glaucoma. PLoS One 26(14(4)):e0215684. https://doi.org/10.1371/journal.pone.0215684

    Article  CAS  Google Scholar 

  32. Yousefi S (2019) Promise of optical coherence tomography angiography in determining progression of glaucoma. JAMA Ophthalmol. https://doi.org/10.1001/jamaophthalmol.2019.0467

  33. Yaqub M (2012) Visual fields interpretation in glaucoma: a focus on static automated perimetry. Commun Eye Health 25(79–80):1–8

    Google Scholar 

  34. Keer KV, Breda JB, Pinto LA, Stalmans I, Vandewalle E (2016) Estimating mean ocular perfusion pressure using mean arterial pressure and intraocular pressure. Invest Ophthalmol Vis Sci 57(2260):16–19375

  35. Jia Y, Tan O, Tokayer J et al (2012) Split-spectrum amplitude decorrelation angiography with optical coherence tomography. Opt Express 20:4710–4725

  36. Medeiros FA, Zangwill LM, Bowd C, Vessani RM, Susanna R Jr, Weinreb RN (2005) Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. Am J Ophthalmol 139:44–55

    Article  PubMed  Google Scholar 

  37. Geyman LS, Garg RA, Suwan Y et al (2017) Peripapillary perfused capillary density in primary open-angle glaucoma across disease stage: an optical coherence tomography angiography study. Br J Ophthalmol 101(9):1261–1268

    Article  PubMed  Google Scholar 

  38. Cronemberger S, Silva AC, Calixto N (2010) Importance of intraocular pressure measurement at 6:00 a.m. in bed and in darkness in suspected and glaucomatous patients. Arq Bras Oftalmol 73(4):346–349

    Article  PubMed  Google Scholar 

  39. Quaranta L, Gandolfo F, Turano R, Rovida F, Pizzolante T, Musig A, Gandolfo E (2006) Effects of topical hypotensive drugs on circadian IOP, blood pressure, and calculated diastolic ocular perfusion pressure in patients with glaucoma. Invest Ophthalmol Vis Sci 47(7):2917–2923

    Article  PubMed  Google Scholar 

  40. Topouzis F, Wilson MR, Harris A, Founti P, Yu F, Anastasopoulos E, Pappas T, Koskosas A, Salonikiou A, Coleman AL (2013) Association of open-angle glaucoma with perfusion pressure status in the Thessaloniki Eye Study. Am J Ophthalmol 155(5):843–851

    Article  PubMed  Google Scholar 

Download references

Funding

The contribution of the author/s Francesco Oddone, Lucia Tanga, Ivano Riva, and Alice C. Verticchio Vercellin was supported by Fondazione Roma and by the Italian Ministry of Health. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. All the other authors received no specific funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alon Harris.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethics statement

The study protocol was approved by the Ethical Committee of the IRCCS, Fondazione G.B. Bietti, Rome, Italy. All patients signed an informed consent prior to initiation of this study, which adhered to the tenets of the Declaration of Helsinki.

Financial disclosure

Dr. Alon Harris would like to disclose that he receives remuneration from AdOM for serving as a consultant and board member, and from Thea for a speaking engagement. Dr. Harris also holds an ownership interest in AdOM, Luseed, Oxymap, and QuLent. None of the other authors listed have any financial disclosures.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 51 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verticchio Vercellin, A.C., Harris, A., Tanga, L. et al. Optic nerve head diurnal vessel density variations in glaucoma and ocular hypertension measured by optical coherence tomography angiography. Graefes Arch Clin Exp Ophthalmol 258, 1237–1251 (2020). https://doi.org/10.1007/s00417-020-04635-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-020-04635-6

Keywords

Navigation