Skip to main content

Advertisement

Log in

Association between optic nerve head morphology in open-angle glaucoma and corneal biomechanical parameters measured with Corvis ST

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purposes

To investigate associations between Corvis ST-measured corneal biomechanical parameters and glaucomatous optic nerve head (ONH) morphology.

Methods

In total, 118 eyes of 70 patients with open-angle glaucoma were examined in this retrospective cross-sectional study. We measured Heidelberg retina tomograph and Corvis ST values in all eyes. We used the linear mixed model in four sectors (temporal superior, TS; temporal inferior, TI; nasal superior, NS; and nasal inferior, NI) to detect associations between six ONH-related parameters and 14 Corvis ST–related parameters, controlling for age, intraocular pressure, axial length, and central corneal thickness. We calculated the ONH temporal and nasal sector vertical asymmetries (TS-TI and NS-NI asymmetries) and identified the optimal linear mixed models to describe them using model selection with the second-order bias corrected Akaike Information Criterion.

Results

The Corvis ST A2 velocity was negatively associated with the rim volume in the NS sector (p < 0.05). The optimal model for TS-TI asymmetry was TS-TI asymmetry = − 3.22 + 0.15 × HC time + 0.88 × HC deflection amplitude, whereas that for NS-NI asymmetry was 0.49–0.048 × axial length − 2.45 × A2 velocity.

Conclusion

Glaucomatous ONH superior-inferior asymmetries were associated with biomechanical properties measured with Corvis ST. Eyes with superior-dominant rim volume reduction of ONH were associated with small deformations and slow recovery of the cornea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Quigley HA, Broman AT (2006) The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90(3):262–267. https://doi.org/10.1136/bjo.2005.081224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Burgoyne CF (2011) A biomechanical paradigm for axonal insult within the optic nerve head in aging and glaucoma. Exp Eye Res 93(2):120–132. https://doi.org/10.1016/j.exer.2010.09.005

    Article  CAS  PubMed  Google Scholar 

  3. Anderson DR (2003) Collaborative normal tension glaucoma study. Curr Opin Ophthalmol 14(2):86–90

    Article  PubMed  Google Scholar 

  4. Garway-Heath DF, Crabb DP, Bunce C, Lascaratos G, Amalfitano F, Anand N, Azuara-Blanco A, Bourne RR, Broadway DC, Cunliffe IA, Diamond JP, Fraser SG, Ho TA, Martin KR, McNaught AI, Negi A, Patel K, Russell RA, Shah A, Spry PG, Suzuki K, White ET, Wormald RP, Xing W, Zeyen TG (2015) Latanoprost for open-angle glaucoma (UKGTS): a randomised, multicentre, placebo-controlled trial. Lancet (London, England) 385(9975):1295–1304. https://doi.org/10.1016/s0140-6736(14)62111-5

    Article  CAS  Google Scholar 

  5. Herndon LW, Weizer JS, Stinnett SS (2004) Central corneal thickness as a risk factor for advanced glaucoma damage. Arch Ophthalmol 122(1):17–21. https://doi.org/10.1001/archopht.122.1.17

    Article  PubMed  Google Scholar 

  6. Jonas JB, Holbach L (2005) Central corneal thickness and thickness of the lamina cribrosa in human eyes. Invest Ophthalmol Vis Sci 46(4):1275–1279. https://doi.org/10.1167/iovs.04-0851

    Article  PubMed  Google Scholar 

  7. Resch H, Garhofer G, Fuchsjager-Mayrl G, Hommer A, Schmetterer L (2009) Endothelial dysfunction in glaucoma. Acta Ophthalmol 87(1):4–12. https://doi.org/10.1111/j.1755-3768.2007.01167.x

    Article  PubMed  Google Scholar 

  8. Mallick J, Devi L, Malik PK, Mallick J (2016) Update on normal tension glaucoma. J Ophthalmic Vision Res 11(2):204–208. https://doi.org/10.4103/2008-322x.183914

    Article  Google Scholar 

  9. De Moraes CV, Hill V, Tello C, Liebmann JM, Ritch R (2012) Lower corneal hysteresis is associated with more rapid glaucomatous visual field progression. J Glaucoma 21(4):209–213. https://doi.org/10.1097/IJG.0b013e3182071b92

    Article  PubMed  Google Scholar 

  10. Nicolela MT, Drance SM (1996) Various glaucomatous optic nerve appearances: clinical correlations. Ophthalmology 103(4):640–649

    Article  CAS  PubMed  Google Scholar 

  11. Araie M (1995) Pattern of visual field defects in normal-tension and high-tension glaucoma. Curr Opin Ophthalmol 6(2):36–45

    Article  CAS  PubMed  Google Scholar 

  12. Su WW, Hsieh SS, Cheng ST, Su CW, Wu WC, Chen HS (2018) Visual subfield progression in glaucoma subtypes. J Ophthalmol 2018:7864219. https://doi.org/10.1155/2018/7864219

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yousefi S, Sakai H, Murata H, Fujino Y, Garway-Heath D, Weinreb R, Asaoka R (2018) Asymmetric patterns of visual field defect in primary open-angle and primary angle-closure glaucoma. Invest Ophthalmol Vis Sci 59(3):1279–1287. https://doi.org/10.1167/iovs.17-22980

    Article  PubMed  Google Scholar 

  14. Budenz DL, Michael A, Chang RT, McSoley J, Katz J (2005) Sensitivity and specificity of the StratusOCT for perimetric glaucoma. Ophthalmology 112(1):3–9. https://doi.org/10.1016/j.ophtha.2004.06.039

    Article  PubMed  Google Scholar 

  15. Asaoka R, Murata H, Fujino Y, Hirasawa K, Tanito M, Mizoue S, Mori K, Suzuki K, Yamashita T, Kashiwagi K, Miki A, Shoji N (2017) Effects of ocular and systemic factors on the progression of glaucomatous visual field damage in various sectors. Br J Ophthalmol 101(8):1071–1075. https://doi.org/10.1136/bjophthalmol-2016-309643

    Article  PubMed  Google Scholar 

  16. Fontal MR, Kerrison JB, Garcia R, Oria V (2007) Ischemic optic neuropathy. Semin Neurol 27(3):221–232. https://doi.org/10.1055/s-2007-979686

    Article  PubMed  Google Scholar 

  17. Ambrósio R Jr, Ramos I, Luz A, Faria FC, Steinmueller A, Krug M, Belin MW, Roberts CJ (2013) Dynamic ultra high speed Scheimpflug imaging for assessing corneal biomechanical properties. Rev Bras Oftalmol 72(2):99–102

    Article  Google Scholar 

  18. Matsuura M, Hirasawa K, Murata H, Yanagisawa M, Nakao Y, Nakakura S, Kiuchi Y, Asaoka R (2016) The relationship between Corvis ST tonometry and ocular response analyzer measurements in eyes with glaucoma. PLoS One 11(8):e0161742. https://doi.org/10.1371/journal.pone.0161742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Matsuura M, Hirasawa K, Murata H, Nakakura S, Kiuchi Y, Asaoka R (2017) Using CorvisST tonometry to assess glaucoma progression. PLoS One 12(5):e0176380. https://doi.org/10.1371/journal.pone.0176380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Perez-Bartolome F, Martinez de la Casa JM, Camacho Bosca I, Saenz-Frances F, Aguilar-Munoa S, Martin-Juan A, Garcia-Feijoo J (2016) Correlating corneal biomechanics and ocular biometric properties with lamina cribrosa measurements in healthy subjects. Semin Ophthalmol:1–8. https://doi.org/10.1080/08820538.2016.1208763

  21. Uysal BS, Yulek F, Nalcacioglu P, Sarac O, Yorgun MA, Cagil N (2016) Can corneal biomechanical properties give clues about elasticity of optic nerve scleral component in nonarteritic anterior ischemic optic neuropathy? J Neuroophthalmol 36(3):285–289. https://doi.org/10.1097/wno.0000000000000406

    Article  PubMed  Google Scholar 

  22. Aoki S, Murata H, Nakakura S, Nakao Y, Matsuura M, Kiuchi Y, Asaoka R (2018) Correlation between elastic energy stored in an eye and visual field progression in glaucoma. PLoS One 13(9):e0204451. https://doi.org/10.1371/journal.pone.0204451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dielemans I, Vingerling JR, Hofman A, Grobbee DE, de Jong PT (1994) Reliability of intraocular pressure measurement with the Goldmann applanation tonometer in epidemiological studies. Graefes Arch Clin Exp ophthalmol 232(3):141–144. https://doi.org/10.1007/bf00176782

    Article  CAS  PubMed  Google Scholar 

  24. Whitacre MM, Stein RA, Hassanein K (1993) The effect of corneal thickness on applanation tonometry. Am J Ophthalmol 115(5):592–596

    Article  CAS  PubMed  Google Scholar 

  25. Argus WA (1995) Ocular hypertension and central corneal thickness. Ophthalmology 102(12):1810–1812

    Article  CAS  PubMed  Google Scholar 

  26. Whitacre MM, Stein R (1993) Sources of error with use of Goldmann-type tonometers. Surv Ophthalmol 38(1):1–30. https://doi.org/10.1016/0039-6257(93)90053-a

    Article  CAS  PubMed  Google Scholar 

  27. Anderson D, Patella V (1999) Automated static perimetry. 2nd. St Louis, Missouri, USA

  28. Weinreb RN, Dreher AW, Bille JF (1989) Quantitative assessment of the optic nerve head with the laser tomographic scanner. Int Ophthalmol 13(1–2):25–29

    Article  CAS  PubMed  Google Scholar 

  29. Rohrschneider K, Burk RO, Kruse FE, Volcker HE (1994) Reproducibility of the optic nerve head topography with a new laser tomographic scanning device. Ophthalmology 101(6):1044–1049. https://doi.org/10.1016/s0161-6420(94)31220-6

    Article  CAS  PubMed  Google Scholar 

  30. Hatch WV, Flanagan JG, Williams-Lyn DE, Buys YM, Farra T, Trope GE (1999) Interobserver agreement of Heidelberg retina tomograph parameters. J Glaucoma 8(4):232–237

    Article  CAS  PubMed  Google Scholar 

  31. Prata TS, Meira-Freitas D, Lima VC, Guedes LM, Magalhaes FP, Paranhos Junior A (2010) Factors affecting the variability of the Heidelberg Retina Tomograph III measurements in newly diagnosed glaucoma patients. Arq Bras Oftalmol 73(4):354–357. https://doi.org/10.1590/s0004-27492010000400011

    Article  PubMed  Google Scholar 

  32. Michelessi M, Lucenteforte E, Oddone F, Brazzelli M, Parravano M, Franchi S, Ng SM, Virgili G (2015) Optic nerve head and fibre layer imaging for diagnosing glaucoma. Cochrane Database Syst Rev (11):Cd008803. https://doi.org/10.1002/14651858.CD008803.pub2

  33. Banister K, Boachie C, Bourne R, Cook J, Burr JM, Ramsay C, Garway-Heath D, Gray J, McMeekin P, Hernandez R, Azuara-Blanco A (2016) Can automated imaging for optic disc and retinal nerve fiber layer analysis aid glaucoma detection? Ophthalmology 123(5):930–938. https://doi.org/10.1016/j.ophtha.2016.01.041

    Article  PubMed  Google Scholar 

  34. Lopes BT, Roberts CJ, Elsheikh A, Vinciguerra R, Vinciguerra P, Reisdorf S, Berger S, Koprowski R, Ambrosio R Jr (2017) Repeatability and reproducibility of intraocular pressure and dynamic corneal response parameters assessed by the Corvis ST. J Ophthalmol 2017:8515742. https://doi.org/10.1155/2017/8515742

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tibshirani RJ, Taylor J (2012) Degrees of freedom in lasso problems. Ann Stat 40(2):1198–1232

    Article  Google Scholar 

  36. Mallows CL (1973) Some comments on C p. Technometrics 15(4):661–675

    Google Scholar 

  37. Burnham KP, Anderson DR (2004) Multimodel inference understanding AIC and BIC in model selection. Sociol Methods Res 33(2):261–304

    Article  Google Scholar 

  38. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6(2):65–70

    Google Scholar 

  39. Le A, Mukesh BN, McCarty CA, Taylor HR (2003) Risk factors associated with the incidence of open-angle glaucoma: the visual impairment project. Invest Ophthalmol Vis Sci 44(9):3783–3789

    Article  PubMed  Google Scholar 

  40. Wang W, Du S, Zhang X (2015) Corneal deformation response in patients with primary open-angle glaucoma and in healthy subjects analyzed by Corvis ST. Invest Ophthalmol Vis Sci 56(9):5557–5565. https://doi.org/10.1167/iovs.15-16926

    Article  PubMed  Google Scholar 

  41. Wells AP, Garway-Heath DF, Poostchi A, Wong T, Chan KC, Sachdev N (2008) Corneal hysteresis but not corneal thickness correlates with optic nerve surface compliance in glaucoma patients. Invest Ophthalmol Vis Sci 49(8):3262–3268. https://doi.org/10.1167/iovs.07-1556

    Article  PubMed  Google Scholar 

  42. Lanzagorta-Aresti A, Perez-Lopez M, Palacios-Pozo E, Davo-Cabrera J (2017) Relationship between corneal hysteresis and lamina cribrosa displacement after medical reduction of intraocular pressure. Br J Ophthalmol 101(3):290–294. https://doi.org/10.1136/bjophthalmol-2015-307428

    Article  PubMed  Google Scholar 

  43. Mayama C, Tsutsumi T, Saito H, Asaoka R, Tomidokoro A, Iwase A, Otani S, Miyata K, Araie M (2014) Glaucoma-induced optic disc morphometric changes and glaucoma diagnostic ability of Heidelberg Retina Tomograph II in highly myopic eyes. PLoS One 9(1):e86417. https://doi.org/10.1371/journal.pone.0086417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. He M, Wang W, Ding H, Zhong X (2017) Corneal biomechanical properties in high myopia measured by dynamic Scheimpflug imaging technology. Optom Vis Sci 94(12):1074–1080. https://doi.org/10.1097/opx.0000000000001152

    Article  PubMed  Google Scholar 

  45. Aoki S, Murata H, Matsuura M, Fujino Y, Nakakura S, Nakao Y, Kiuchi Y, Asaoka R (2018) The effect of air pulse-driven whole eye motion on the association between corneal hysteresis and glaucomatous visual field progression. Sci Rep 8(1):2969. https://doi.org/10.1038/s41598-018-21424-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was (partially) supported by The Translational Research program; Strategic Promotion for practical application of Innovative medical Technology, TR-SPRINT, from the Japan Agency for Medical Research and Development, AMED, Grants 18KK0253 and 17 K11418 from the Ministry of Education, Culture, Sports, Science, and Technology of Japan and Japan Science and Technology Agency (JST) CREST JPMJCR1304.

Author information

Authors and Affiliations

Authors

Contributions

Shuichiro Aoki, Yoshiaki Kiuchi, Shunsuke Nakakura, and Ryo Asaoka contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Shuichiro Aoki, Yoshiaki Kiuchi, Kana Tokumo, Yuri Fujino, Masato Matsuura, Hiroshi Murata, and Ryo Asaoka. The first draft of the manuscript was written by Shuichiro Aoki. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ryo Asaoka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aoki, S., Kiuchi, Y., Tokumo, K. et al. Association between optic nerve head morphology in open-angle glaucoma and corneal biomechanical parameters measured with Corvis ST. Graefes Arch Clin Exp Ophthalmol 258, 629–637 (2020). https://doi.org/10.1007/s00417-019-04572-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-019-04572-z

Keywords

Navigation