Skip to main content

Advertisement

Log in

Gene expression in retinal ischemic post-conditioning

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The pathophysiology of retinal ischemia involves mechanisms including inflammation and apoptosis. Ischemic post-conditioning (Post-C), a brief non-lethal ischemia, induces a long-term ischemic tolerance, but the mechanisms of ischemic post-conditioning in the retina have only been described on a limited basis. Accordingly, we conducted this study to determine the molecular events in retinal ischemic post-conditioning and to identify targets for therapeutic strategies for retinal ischemia.

Methods

To determine global molecular events in ischemic post-conditioning, a comprehensive study of the transcriptome of whole retina was performed. We utilized RNA sequencing (RNA-Seq), a recently developed, deep sequencing technique enabling quantitative gene expression, with low background noise, dynamic detection range, and discovery of novel genes. Rat retina was subjected to ischemia in vivo by elevation of intraocular pressure above systolic blood pressure. At 24 h after ischemia, Post-C or sham Post-C was performed by another, briefer period of ischemia, and 24 h later, retinas were collected and RNA processed.

Results

There were 71 significantly affected pathways in post-conditioned/ischemic vs. normals and 43 in sham post conditioned/ischemic vs. normals. Of these, 28 were unique to Post-C and ischemia. Seven biological pathways relevant to ischemic injury, in Post-C as opposed to sham Post-C, were examined in detail. Apoptosis, p53, cell cycle, JAK-STAT, HIF-1, MAPK and PI3K-Akt pathways significantly differed in the number as well as degree of fold change in genes between conditions.

Conclusion

Post-C is a complex molecular signaling process with a multitude of altered molecular pathways. We identified potential gene candidates in Post-C. Studying the impact of altering expression of these factors may yield insight into new methods for treating or preventing damage from retinal ischemic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zheng L, Gong B, Hatala DA, Kern TS (2007) Retinal ischemia and reperfusion causes capillary degeneration: similarities to diabetes. Invest Ophthalmol Vis Sci 48:361–367

    Article  PubMed  Google Scholar 

  2. Dreixler JC, Poston JN, Shaikh AR, Alexander M, Tupper KY, Marcet MM, Bernaudin M, Roth S (2011) Delayed post-ischemic conditioning significantly improves the outcome after retinal ischemia. Exp Eye Res 92:521–527. https://doi.org/10.1016/j.exer.2011.03.015

    Article  CAS  PubMed  Google Scholar 

  3. Fernandez DC, Bordone MP, Chianelli MS, Rosenstein RE (2009) Retinal neuroprotection against ischemia-reperfusion damage induced by postconditioning. Invest Ophthalmol Vis Sci 50:3922–3930

    Article  PubMed  Google Scholar 

  4. Osborne NN, Ugarte M, Chao M, Chidlow G, Bae JH, Wood JP, Nash MS (1999) Neuroprotection in relation to retinal ischemia and relevance to glaucoma. Surv Ophthalmol 43(Suppl 1):S102–S128

    Article  PubMed  Google Scholar 

  5. Limalanathan S, Andersen GO, Hoffmann P, Klow N-E, Abdelnoor M, Eritsland J (2010) Rationale and design of the POSTEMI (postconditioning in ST-elevation myocardial infarction) study. Cardiology 116:103–109

    Article  PubMed  Google Scholar 

  6. Zhao H (2009) Ischemic postconditioning as a novel avenue to protect against brain injury after stroke. J Cereb Blood Flow Metab 29:873–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dreixler JC, Sampat A, Shaikh AR, Alexander M, Marcet MM, Roth S (2011) Protein kinase B (Akt) and mitogen-activated protein kinase p38alpha in retinal ischemic post-conditioning. J Mol Neurosci 45:309–320. https://doi.org/10.1007/s12031-011-9523-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yasuda M, Tanaka Y, Omodaka K, Nishiguchi KM, Nakamura O, Tsuda S, Nakazawa T (2016) Transcriptome profiling of the rat retina after optic nerve transection. Sci Rep 6:28736. https://doi.org/10.1038/srep28736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63. https://doi.org/10.1038/nrg2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brown J, Pirrung M, McCue LA (2017) FQC dashboard: integrates FastQC results into a web based interactive and extensible FastQ quality control tool. Bioinformatics. https://doi.org/10.1093/bioinformatics/btx373

  11. Li H, Durbin R (2010) Fast and accurate long-read alignment with burrows-wheeler transform. Bioinformatics 26:589–595. https://doi.org/10.1093/bioinformatics/btp698

    Article  PubMed  PubMed Central  Google Scholar 

  12. Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930. https://doi.org/10.1093/bioinformatics/btt656

    Article  CAS  PubMed  Google Scholar 

  13. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. https://doi.org/10.1093/bioinformatics/btp616

    Article  CAS  PubMed  Google Scholar 

  14. Anders S, McCarthy DJ, Chen Y, Okoniewski M, Smyth GK, Huber W, Robinson MD (2013) Count-based differential expression analysis of RNA sequencing data using R and Bioconductor. Nat Protoc 8:1765–1786. https://doi.org/10.1038/nprot.2013.099

    Article  PubMed  Google Scholar 

  15. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B (Methodological) 57:289–300

    Google Scholar 

  16. Pathan M, Keerthikumar S, Ang CS, Gangoda L, Quek CY, Williamson NA, Mouradov D, Sieber OM, Simpson RJ, Salim A, Bacic A, Hill AF, Stroud DA, Ryan MT, Agbinya JI, Mariadason JM, Burgess AW, Mathivanan S (2015) FunRich: an open access standalone functional enrichment and interaction network analysis tool. Proteomics 15:2597–2601. https://doi.org/10.1002/pmic.201400515

    Article  CAS  PubMed  Google Scholar 

  17. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25:25–29. https://doi.org/10.1038/75556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Collaborators (2015) Gene ontology consortium: going forward. Nucleic Acids Res 43:D1049–D1056. https://doi.org/10.1093/nar/gku1179

    Article  Google Scholar 

  19. Ahsan S, Draghici S (2017) Identifying significantly impacted pathways and putative mechanisms with iPathwayGuide. Curr Protoc Bioinformatics 57:7.15.1–7.15.30. https://doi.org/10.1002/cpbi.24

    Article  Google Scholar 

  20. Draghici S, Khatri P, Tarca AL, Amin K, Done A, Voichita C, Georgescu C, Romero R (2007) A systems biology approach for pathway level analysis. Genome Res 17:1537–1545. https://doi.org/10.1101/gr.6202607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huang HC, Niu Y, Qin LX (2015) Differential expression analysis for RNA-Seq: an overview of statistical methods and computational software. Cancer Informat 14(Suppl 1):57–67. https://doi.org/10.4137/CIN.S21631

    CAS  Google Scholar 

  23. Hussein SMI, Puri MC, Tonge PD, Benevento M, Corso AJ, Clancy JL, Mosbergen R, Li M, Lee D-S, Cloonan N, Wood DLA, Munoz J, Middleton R, Korn O, Patel HR, White CA, Shin J-Y, Gauthier ME, Cao K-AL, Kim J-I, Mar JC, Shakiba N, Ritchie W, Rasko JEJ, Grimmond SM, Zandstra PW, Wells CA, Preiss T, Seo J-S, Heck AJR, Rogers IM, Nagy A (2014) Genome-wide characterization of the routes to pluripotency. Nature 516:198–206. https://doi.org/10.1038/nature14046

    Article  CAS  PubMed  Google Scholar 

  24. Li W (2012) Volcano plots in analyzing differential expressions with mRNA microarrays. J Bioinforma Comput Biol 10:1231003. https://doi.org/10.1142/S0219720012310038

    Article  Google Scholar 

  25. Wang C, Gong B, Bushel PR, Thierry-Mieg J, Thierry-Mieg D, Xu J, Fang H, Hong H, Shen J, Su Z, Meehan J, Li X, Yang L, Li H, Labaj PP, Kreil DP, Megherbi D, Gaj S, Caiment F, van Delft J, Kleinjans J, Scherer A, Devanarayan V, Wang J, Yang Y, Qian H-R, Lancashire LJ, Bessarabova M, Nikolsky Y, Furlanello C, Chierici M, Albanese D, Jurman G, Riccadonna S, Filosi M, Visintainer R, Zhang KK, Li J, Hsieh J-H, Svoboda DL, Fuscoe JC, Deng Y, Shi L, Paules RS, Auerbach SS, Tong W (2014) The concordance between RNA-seq and microarray data depends on chemical treatment and transcript abundance. Nat Biotechnol 32:926–932. https://doi.org/10.1038/nbt.3001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang C, Rosenbaum DM, Shaikh AR, Li Q, Rosenbaum PS, Pelham DJ, Roth S (2002) Ischemic preconditioning attenuates apoptosis following retinal ischemia in rats. Invest Ophthalmol Vis Sci 43:3059–3066

    PubMed  Google Scholar 

  27. Singh M, Savitz SI, Hoque R, Rosenbaum PS, Roth S, Rosenbaum DM (2001) Cell-specific caspase expression by different neuronal phenotypes in transient retinal ischemia. J Neurochem 77:466–475

    Article  CAS  PubMed  Google Scholar 

  28. Berger S, Savitz SI, Nijhawan S, Singh M, David J, Rosenbaum PS, Rosenbaum DM (2008) Deleterious role of TNF-alpha in retinal ischemia-reperfusion injury. Invest Ophthalmol Vis Sci 49:3605–3610. https://doi.org/10.1167/iovs.07-0817

    Article  PubMed  Google Scholar 

  29. Wan T, Xu Z, Zhou HJ, Zhang H, Luo Y, Li Y, Min W (2013) Functional analyses of TNFR2 in physiological and pathological retina angiogenesis. Invest Ophthalmol Vis Sci 54:211–221. https://doi.org/10.1167/iovs.12-10364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kuroiwa S, Katai N, Shibuki H, Kurokawa T, Umihira J, Nikaido T, Kametani K, Yoshimura N (1998) Expression of cell cycle-related genes in dying cells in retinal ischemic injury. Invest Ophthalmol Vis Sci 39:610–617

    CAS  PubMed  Google Scholar 

  31. Kuan CY, Schloemer AJ, Lu A, Burns KA, Weng WL, Williams MT, Strauss KI, Vorhees CV, Flavell RA, Davis RJ, Sharp FR, Rakic P (2004) Hypoxia-ischemia induces DNA synthesis without cell proliferation in dying neurons in adult rodent brain. J Neurosci 24:10763–10772. https://doi.org/10.1523/jneurosci.3883-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Frade JM, Ovejero-Benito MC (2015) Neuronal cell cycle: the neuron itself and its circumstances. Cell Cycle 14:712–720. https://doi.org/10.1080/15384101.2015.1004937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Keeley PW, Zhou C, Lu L, Williams RW, Melmed S, Reese BE (2014) Pituitary tumor-transforming gene 1 regulates the patterning of retinal mosaics. Proc Natl Acad Sci U S A 111:9295–9300. https://doi.org/10.1073/pnas.1323543111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yetemian RM, Craft CM (2011) Characterization of the pituitary tumor transforming gene 1 knockout mouse retina. Neurochem Res 36:636–644. https://doi.org/10.1007/s11064-010-0334-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Matsuda D, Matsumoto T, Honma K, Ikawa-Yoshida A, Onimaru M, Furuyama T, Nakatsu Y, Tsuzuki T, Maehara Y (2016) BUBR1 insufficiency in mice increases their sensitivity to oxidative stress. In Vivo 30:769–776

    Article  CAS  PubMed  Google Scholar 

  36. Yang Z, Jun H, Choi CI, Yoo KH, Cho CH, Hussaini SMQ, Simmons AJ, Kim S, van Deursen JM, Baker DJ, Jang MH (2017) Age-related decline in BubR1 impairs adult hippocampal neurogenesis. Aging Cell 16:598–601. https://doi.org/10.1111/acel.12594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Deegan TD, Diffley JF (2016) MCM: one ring to rule them all. Curr Opin Struct Biol 37:145–151. https://doi.org/10.1016/j.sbi.2016.01.014

    Article  CAS  PubMed  Google Scholar 

  38. Ryu S, Holzschuh J, Erhardt S, Ettl AK, Driever W (2005) Depletion of minichromosome maintenance protein 5 in the zebrafish retina causes cell-cycle defect and apoptosis. Proc Natl Acad Sci U S A 102:18467–18472. https://doi.org/10.1073/pnas.0506187102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nivison-Smith L, Khoo P, Acosta ML, Kalloniatis M (2017) Vinpocetine protects inner retinal neurons with functional NMDA glutamate receptors against retinal ischemia. Exp Eye Res 167:1–13. https://doi.org/10.1016/j.exer.2017.10.008

    Article  PubMed  Google Scholar 

  40. Langley B, D'Annibale MA, Suh K, Ayoub I, Tolhurst A, Bastan B, Yang L, Ko B, Fisher M, Cho S, Beal MF, Ratan RR (2008) Pulse inhibition of histone deacetylases induces complete resistance to oxidative death in cortical neurons without toxicity and reveals a role for cytoplasmic p21(waf1/cip1) in cell cycle-independent neuroprotection. J Neurosci 28:163–176. https://doi.org/10.1523/jneurosci.3200-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Babapoor-Farrokhran S, Jee K, Puchner B, Hassan SJ, Xin X, Rodrigues M, Kashiwabuchi F, Ma T, Hu K, Deshpande M, Daoud Y, Solomon S, Wenick A, Lutty GA, Semenza GL, Montaner S, Sodhi A (2015) Angiopoietin-like 4 is a potent angiogenic factor and a novel therapeutic target for patients with proliferative diabetic retinopathy. Proc Natl Acad Sci U S A 112:E3030–E3039. https://doi.org/10.1073/pnas.1423765112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kesler CT, Pereira ER, Cui CH, Nelson GM, Masuck DJ, Baish JW, Padera TP (2015) Angiopoietin-4 increases permeability of blood vessels and promotes lymphatic dilation. FASEB J 29:3668–3677. https://doi.org/10.1096/fj.14-268920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jaakkola PM, Rantanen K (2013) The regulation, localization, and functions of oxygen-sensing prolyl hydroxylase PHD3. Biol Chem 394:449–457. https://doi.org/10.1515/hsz-2012-0330

    Article  CAS  PubMed  Google Scholar 

  44. Yu F, White SB, Zhao Q, Lee FS (2001) HIF-1alpha binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc Natl Acad Sci U S A 98:9630–9635. https://doi.org/10.1073/pnas.181341498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Trichonas G, Lee TJ, Hoppe G, Au J, Sears JE (2013) Prolyl hydroxylase inhibition during hyperoxia prevents oxygen-induced retinopathy in the rat 50/10 model. Invest Ophthalmol Vis Sci 54:4919–4926. https://doi.org/10.1167/iovs.13-12171

    Article  PubMed  Google Scholar 

  46. Vogler M, Zieseniss A, Hesse AR, Levent E, Tiburcy M, Heinze E, Burzlaff N, Schley G, Eckardt KU, Willam C, Katschinski DM (2015) Pre- and post-conditional inhibition of prolyl-4-hydroxylase domain enzymes protects the heart from an ischemic insult. Pflugers Arch 467:2141–2149. https://doi.org/10.1007/s00424-014-1667-z

    Article  CAS  PubMed  Google Scholar 

  47. Goodman MD, Koch SE, Fuller-Bicer GA, Butler KL (2008) Regulating RISK: a role for JAK-STAT signaling in postconditioning? Am J Phys 295:H1649–H1656. https://doi.org/10.1152/ajpheart.00692.2008

    CAS  Google Scholar 

  48. Hausenloy DJ, Yellon DM (2006) Survival kinases in ischemic preconditioning and postconditioning. Cardiovasc Res 70:240–253. https://doi.org/10.1016/j.cardiores.2006.01.017

    Article  CAS  PubMed  Google Scholar 

  49. Kim HC, Kim E, Bae JI, Lee KH, Jeon YT, Hwang JW, Lim YJ, Min SW, Park HP (2017) Sevoflurane Postconditioning reduces apoptosis by activating the JAK-STAT pathway after transient global cerebral ischemia in rats. J Neurosurg Anesthesiol 29:37–45. https://doi.org/10.1097/ana.0000000000000331

    Article  PubMed  Google Scholar 

  50. Wang Y, Wang D, Zhang L, Ye F, Li M, Wen K (2016) Role of JAK-STAT pathway in reducing cardiomyocytes hypoxia/reoxygenation injury induced by S1P postconditioning. Eur J Pharmacol 784:129–136. https://doi.org/10.1016/j.ejphar.2016.05.024

    Article  CAS  PubMed  Google Scholar 

  51. Cox-Limpens KE, Gavilanes AW, Zimmermann LJ, Vles JS (2014) Endogenous brain protection: what the cerebral transcriptome teaches us. Brain Res 1564:85–100. https://doi.org/10.1016/j.brainres.2014.04.001

    Article  CAS  PubMed  Google Scholar 

  52. Di Re J, Wadsworth PA, Laezza F (2017) Intracellular fibroblast growth factor 14: emerging risk factor for brain disorders. Front Cell Neurosci 11:103. https://doi.org/10.3389/fncel.2017.00103

    Article  PubMed  PubMed Central  Google Scholar 

  53. Pablo JL, Pitt GS (2017) FGF14 is a regulator of KCNQ2/3 channels. Proc Natl Acad Sci U S A 114:154–159. https://doi.org/10.1073/pnas.1610158114

    Article  CAS  PubMed  Google Scholar 

  54. Ziff EB (2007) TARPs and the AMPA receptor trafficking paradox. Neuron 53:627–633. https://doi.org/10.1016/j.neuron.2007.02.006

    Article  CAS  PubMed  Google Scholar 

  55. Machida N, Umikawa M, Takei K, Sakima N, Myagmar BE, Taira K, Uezato H, Ogawa Y, Kariya K (2004) Mitogen-activated protein kinase kinase kinase kinase 4 as a putative effector of Rap2 to activate the c-Jun N-terminal kinase. J Biol Chem 279:15711–15714. https://doi.org/10.1074/jbc.C300542200

    Article  CAS  PubMed  Google Scholar 

  56. Roth Flach RJ, Skoura A, Matevossian A, Danai LV, Zheng W, Cortes C, Bhattacharya SK, Aouadi M, Hagan N, Yawe JC, Vangala P, Menendez LG, Cooper MP, Fitzgibbons TP, Buckbinder L, Czech MP (2015) Endothelial protein kinase MAP4K4 promotes vascular inflammation and atherosclerosis. Nat Commun 6:8995. https://doi.org/10.1038/ncomms9995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rowley SM, Kuriakose T, Dockery LM, Tran-Ngyuen T, Gingerich AD, Wei L, Watford WT (2014) Tumor progression locus 2 (Tpl2) kinase promotes chemokine receptor expression and macrophage migration during acute inflammation. J Biol Chem 289:15788–15797. https://doi.org/10.1074/jbc.M114.559344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ghigo A, Laffargue M, Li M, Hirsch E (2017) PI3K and calcium signaling in cardiovascular disease. Circ Res 121:282–292. https://doi.org/10.1161/circresaha.117.310183

    Article  CAS  PubMed  Google Scholar 

  59. Carloni S, Girelli S, Scopa C, Buonocore G, Longini M, Balduini W (2015) Activation of autophagy and Akt/CREB signaling play an equivalent role in the neuroprotective effect of rapamycin in neonatal hypoxia-ischemia. Autophagy 6:366–377

    Article  Google Scholar 

  60. Dyer MA, Cepko CL (2000) Control of Muller glial cell proliferation and activation following retinal injury. Nat Neurosci 3:873–880. https://doi.org/10.1038/78774

    Article  CAS  PubMed  Google Scholar 

  61. Vetter ML, Hitchcock PF (2017) Report on the National eye Institute audacious goals initiative: replacement of retinal ganglion cells from endogenous cell sources. Transl Vis Sci Technol 6:5. https://doi.org/10.1167/tvst.6.2.5

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wilken MS, Reh TA (2016) Retinal regeneration in birds and mice. Curr Opin Genet Dev 40:57–64. https://doi.org/10.1016/j.gde.2016.05.028

    Article  CAS  PubMed  Google Scholar 

  63. Ishikawa K, Yoshida S, Kobayashi Y, Zhou Y, Nakama T, Nakao S, Sassa Y, Oshima Y, Niiro H, Akashi K, Kono T, Ishibashi T (2015) Microarray analysis of gene expression in Fibrovascular membranes excised from patients with proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 56:932–946. https://doi.org/10.1167/iovs.14-15589

    Article  CAS  PubMed  Google Scholar 

  64. Kratz A, Carninci P (2014) The devil in the details of RNA-seq. Nat Biotechnol 32:882–884. https://doi.org/10.1038/nbt.3015

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Institutes of Health (Rockville, MD, USA) grant EY10343 to Dr. Roth, UL1TR000050 to the Center for Clinical and Translational Sciences of the University of Illinois at Chicago, the Illinois Society for the Prevention of Blindness, Chicago, IL, USA (Ms. Stelman); the Craig Foundation (Chicago, IL, USA, Ms. Stelman), a medical student research fellowship grant from the Foundation for Anesthesia Education and Research (Schaumburg, IL, USA, Ms. Stelman), and Core Grant P30 EY001792 (to the Department of Ophthalmology, University of Illinois at Chicago from the National Institutes of Health, Rockville, MD, USA); There was no involvement of the funding bodies in the design of the study or in collection, analysis and interpretation of the data or the writing of the manuscript. None of the authors have any conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Roth.

Ethics declarations

Animal experiments

Ethical approval: All procedures performed in studies involving animals were in accordance with the ethical standards of and approved by the Institutional Animal Care and Use Committee of the University of Illinois at Chicago.

Electronic supplementary material

ESM 1

(PPTX 4685 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadzielawa, K., Mathew, B., Stelman, C.R. et al. Gene expression in retinal ischemic post-conditioning. Graefes Arch Clin Exp Ophthalmol 256, 935–949 (2018). https://doi.org/10.1007/s00417-018-3905-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-018-3905-0

Keywords

Navigation