Skip to main content

Advertisement

Log in

Impairment of autoregulation of optic nerve head blood flow during vitreous surgery in patients with hypertension and hyperlipidemia

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To examine whether hypertension (HTN) and hyperlipidemia (HL) affect autoregulation of optic nerve head (ONH) blood flow during vitrectomy.

Design: Cohort study.

Methods

Seventeen eyes from 17 subjects with HTN and HL and 19 eyes from 19 control subjects without systemic disorders underwent vitrectomy for the treatment of epiretinal membrane or macular hole. Following standard 25-gauge microincision vitrectomy, the mean blur rate (MBR), which is an index of relative ONH blood flow, in the vascular area (vascular MBR) and MBR in the tissue area (tissue MBR) were measured using laser speckle flowgraphy. Measurements were conducted before and 5 and 10 min after an approximately 15-mmHg rise in intraocular pressure (IOP). Both parameters represent relative values of ONH blood flow (%, compared to baseline). The recovery rate of blood flow to the ONH was calculated using the following equation: (MBR at 10 min − MBR at 5 min)/(MBR at baseline − MBR at 5 min).

Results

Ocular perfusion pressure in all subjects was reduced both 5 and 10 min after the increase in IOP. Vascular MBR in subjects with HTN and HL (75.5 ± 14.8) was significantly lower than that in control subjects (86.7 ± 12.1) 10 min after IOP elevation (P = 0.019). The recovery rate of vascular blood flow was significantly lower in the HTN and HL groups than in the control group (P = 0.002).

Conclusions

Our results suggest that HTN and HL impair autoregulation in the vascular component of ONH blood flow during vitrectomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Riva CE, Sinclair SH, Grunwald JE (1981) Autoregulation of retinal circulation in response to decrease of perfusion pressure. Invest Ophthalmol Vis Sci 21:34–38

    CAS  PubMed  Google Scholar 

  2. Grunwald JE, Sinclair SH, Riva CE (1982) Autoregulation of the retinal circulation in response to decrease of intraocular pressure below normal. Invest Ophthalmol Vis Sci 23:124–127

    CAS  PubMed  Google Scholar 

  3. Pillunat LE, Anderson DR, Knighton RW, Joos KM, Feuer WJ (1997) Autoregulation of human optic nerve head circulation in response to increased intraocular pressure. Exp Eye Res 64:737–744. https://doi.org/10.1006/exer.1996.0263

    Article  CAS  PubMed  Google Scholar 

  4. Riva CE, Hero M, Titze P, Petrig B (1997) Autoregulation of human optic nerve head blood flow in response to acute changes in ocular perfusion pressure. Graefes Arch Clin Exp Ophthalmol 235:618–626

    Article  CAS  PubMed  Google Scholar 

  5. Schmidl D, Garhofer G, Schmetterer L (2011) The complex interaction between ocular perfusion pressure and ocular blood flow - relevance for glaucoma. Exp Eye Res 93:141–155. https://doi.org/10.1016/j.exer.2010.09.002

    Article  CAS  PubMed  Google Scholar 

  6. Heistad DD, Lopez JA, Baumbach GL (1991) Hemodynamic determinants of vascular changes in hypertension and atherosclerosis. Hypertension 17:III7–II11

    Article  CAS  PubMed  Google Scholar 

  7. Strandgaard S, Olesen J, Skinhoj E, Lassen NA (1973) Autoregulation of brain circulation in severe arterial hypertension. Br Med J 1:507–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hayreh SS, Servais GE, Virdi PS (1986) Fundus lesions in malignant hypertension. V. Hypertensive optic neuropathy. Ophthalmology 93:74–87

    Article  CAS  PubMed  Google Scholar 

  9. Shibata M, Sugiyama T, Hoshiga M, Hotchi J, Okuno T, Oku H, Hanafusa T, Ikeda T (2011) Changes in optic nerve head blood flow, visual function, and retinal histology in hypercholesterolemic rabbits. Exp Eye Res 93:818–824. https://doi.org/10.1016/j.exer.2011.09.014

    Article  CAS  PubMed  Google Scholar 

  10. Bek T, Al-Mashhadi RH, Misfeldt M, Riis-Vestergaard MJ, Bentzon JF, Pedersen SM (2013) Relaxation of porcine retinal arterioles exposed to hypercholesterolemia in vivo is modified by hepatic LDL-receptor deficiency and diabetes mellitus. Exp Eye Res 115:79–86. https://doi.org/10.1016/j.exer.2013.06.013

    Article  CAS  PubMed  Google Scholar 

  11. Reimann M, Weiss N, Ziemssen T (2015) Different responses of the retinal and cutaneous microcirculation to transient dysmetabolic conditions. Atheroscler Suppl 18:1–7. https://doi.org/10.1016/j.atherosclerosissup.2015.02.001

    Article  PubMed  Google Scholar 

  12. Sharifizad M, Witkowska KJ, Aschinger GC, Sapeta S, Rauch A, Schmidl D, Werkmeister RM, Garhofer G, Schmetterer L (2016) Factors determining flicker-induced retinal vasodilation in healthy subjects. Invest Ophthalmol Vis Sci 57:3306–3312. https://doi.org/10.1167/iovs.16-19261

    Article  CAS  PubMed  Google Scholar 

  13. Sugiyama T, Araie M, Riva CE, Schmetterer L, Orgul S (2010) Use of laser speckle flowgraphy in ocular blood flow research. Acta Ophthalmol 88:723–729. https://doi.org/10.1111/j.1755-3768.2009.01586.x

    Article  PubMed  Google Scholar 

  14. Sugiyama T (2014) Basic technology and clinical applications of the updated model of laser speckle flowgraphy to ocular diseases. Photo-Dermatology 1:220–234

    Google Scholar 

  15. Fujii H (1994) Visualisation of retinal blood flow by laser speckle flow-graphy. Med Biol Eng Comput 32:302–304

    Article  CAS  PubMed  Google Scholar 

  16. Takahashi H, Sugiyama T, Tokushige H, Maeno T, Nakazawa T, Ikeda T, Araie M (2013) Comparison of CCD-equipped laser speckle flowgraphy with hydrogen gas clearance method in the measurement of optic nerve head microcirculation in rabbits. Exp Eye Res 108:10–15. https://doi.org/10.1016/j.exer.2012.12.003

    Article  CAS  PubMed  Google Scholar 

  17. Shiga Y, Asano T, Kunikata H, Nitta F, Sato H, Nakazawa T, Shimura M (2014) Relative flow volume, a novel blood flow index in the human retina derived from laser speckle flowgraphy. Invest Ophthalmol Vis Sci 55:3899–3904. https://doi.org/10.1167/iovs.14-14116

    Article  PubMed  Google Scholar 

  18. Isono H, Kishi S, Kimura Y, Hagiwara N, Konishi N, Fujii H (2003) Observation of choroidal circulation using index of erythrocytic velocity. Arch Ophthalmol 121:225–231

    Article  PubMed  Google Scholar 

  19. Hashimoto R, Sugiyama T, Ubuka M, Maeno T (2016) Autoregulation of optic nerve head blood flow induced by elevated intraocular pressure during vitreous surgery. Curr Eye Res 42:625–628. https://doi.org/10.1080/02713683.2016.1220592

    Article  PubMed  Google Scholar 

  20. Ubuka M, Sugiyama T, Onoda Y, Shiba T, Hori Y, Maeno T (2014) Changes in the blood flow of the optic nerve head induced by different concentrations of epinephrine in intravitreal infusion during vitreous surgery. Invest Ophthalmol Vis Sci 55:1625–1629. https://doi.org/10.1167/iovs.13-13801

    Article  CAS  PubMed  Google Scholar 

  21. Hashimoto R, Sugiyama T, Masahara H, Sakamoto M, Ubuka M, Maeno T (2017) Impaired autoregulation of blood flow at the optic nerve head during vitrectomy in patients with type 2 diabetes. Am J Ophthalmol. https://doi.org/10.1016/j.ajo.2017.06.021

  22. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, Jones DW, Materson BJ, Oparil S, Wright JT Jr, Roccella EJ (2003) Seventh report of the joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension 42:1206–1252. https://doi.org/10.1161/01.HYP.0000107251.49515.c2

    Article  CAS  PubMed  Google Scholar 

  23. Teramoto T, Sasaki J, Ueshima H, Egusa G, Kinoshita M, Shimamoto K, Daida H, Biro S, Hirobe K, Funahashi T, Yokote K, Yokode M (2007) Executive summary of Japan atherosclerosis society (JAS) guideline for diagnosis and prevention of atherosclerotic cardiovascular diseases for Japanese. J Atheroscler Thromb 14:45–50

    Article  CAS  PubMed  Google Scholar 

  24. Watkins R, Beigi B, Yates M, Chang B, Linardos E (2001) Intraocular pressure and pulsatile ocular blood flow after retrobulbar and peribulbar anaesthesia. Br J Ophthalmol 85:796–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Aizawa N, Yokoyama Y, Chiba N, Omodaka K, Yasuda M, Otomo T, Nakamura M, Fuse N, Nakazawa T (2011) Reproducibility of retinal circulation measurements obtained using laser speckle flowgraphy-NAVI in patients with glaucoma. Clin Ophthalmol 5:1171–1176. https://doi.org/10.2147/opth.s22093

    PubMed  PubMed Central  Google Scholar 

  26. Caprioli J, Coleman AL (2010) Blood pressure, perfusion pressure, and glaucoma. Am J Ophthalmol 149:704–712. https://doi.org/10.1016/j.ajo.2010.01.018

    Article  PubMed  Google Scholar 

  27. Quaranta L, Katsanos A, Russo A, Riva I (2013) 24-hour intraocular pressure and ocular perfusion pressure in glaucoma. Surv Ophthalmol 58:26–41. https://doi.org/10.1016/j.survophthal.2012.05.003

    Article  PubMed  Google Scholar 

  28. Costa VP, Harris A, Anderson D, Stodtmeister R, Cremasco F, Kergoat H, Lovasik J, Stalmans I, Zeitz O, Lanzl I, Gugleta K, Schmetterer L (2014) Ocular perfusion pressure in glaucoma. Acta Ophthalmol 92:e252–e266. https://doi.org/10.1111/aos.12298

    Article  PubMed  Google Scholar 

  29. Okuno T, Oku H, Sugiyama T, Yang Y, Ikeda T (2002) Evidence that nitric oxide is involved in autoregulation in optic nerve head of rabbits. Invest Ophthalmol Vis Sci 43:784–789

    PubMed  Google Scholar 

  30. Nagaoka T, Sakamoto T, Mori F, Sato E, Yoshida A (2002) The effect of nitric oxide on retinal blood flow during hypoxia in cats. Invest Ophthalmol Vis Sci 43:3037–3044

    PubMed  Google Scholar 

  31. Schmidl D, Boltz A, Kaya S, Palkovits S, Told R, Napora KJ, Cherecheanu AP, Werkmeister RM, Garhofer G, Schmetterer L (2013) Role of nitric oxide in optic nerve head blood flow regulation during an experimental increase in intraocular pressure in healthy humans. Exp Eye Res 116:247–253. https://doi.org/10.1016/j.exer.2013.09.008

    Article  CAS  PubMed  Google Scholar 

  32. Goodfriend TL, Elliott ME, Catt KJ (1996) Angiotensin receptors and their antagonists. N Engl J Med 334:1649–1654. https://doi.org/10.1056/nejm199606203342507

    Article  CAS  PubMed  Google Scholar 

  33. Sugiyama T, Mashima Y, Yoshioka Y, Oku H, Ikeda T (2009) Effect of unoprostone on topographic and blood flow changes in the ischemic optic nerve head of rabbits. Arch Ophthalmol 127:454–459. https://doi.org/10.1001/archophthalmol.2008.606

    Article  PubMed  Google Scholar 

  34. Sugiyama T, Shibata M, Kajiura S, Okuno T, Tonari M, Oku H, Ikeda T (2011) Effects of fasudil, a rho-associated protein kinase inhibitor, on optic nerve head blood flow in rabbits. Invest Ophthalmol Vis Sci 52:64–69. https://doi.org/10.1167/iovs.10-5265

    Article  CAS  PubMed  Google Scholar 

  35. Deschenes MC, Descovich D, Moreau M, Granger L, Kuchel GA, Mikkola TS, Fick GH, Chemtob S, Vaucher E, Lesk MR (2010) Postmenopausal hormone therapy increases retinal blood flow and protects the retinal nerve fiber layer. Invest Ophthalmol Vis Sci 51:2587–2600. https://doi.org/10.1167/iovs.09-3710

    Article  PubMed  Google Scholar 

  36. Zawinka C, Resch H, Schmetterer L, Dorner GT, Garhofer G (2004) Intravenously administered histamine increases choroidal but not retinal blood flow. Invest Ophthalmol Vis Sci 45:2337–2341

    Article  PubMed  Google Scholar 

  37. Polska E, Ehrlich P, Luksch A, Fuchsjager-Mayrl G, Schmetterer L (2003) Effects of adenosine on intraocular pressure, optic nerve head blood flow, and choroidal blood flow in healthy humans. Invest Ophthalmol Vis Sci 44:3110–3114

    Article  PubMed  Google Scholar 

  38. Tani T, Nagaoka T, Nakabayashi S, Yoshioka T, Yoshida A (2014) Autoregulation of retinal blood flow in response to decreased ocular perfusion pressure in cats: comparison of the effects of increased intraocular pressure and systemic hypotension. Invest Ophthalmol Vis Sci 55:360–367. https://doi.org/10.1167/iovs.13-12591

    Article  PubMed  Google Scholar 

  39. Sugiyama T, Oku H, Ikari S, Ikeda T (2000) Effect of nitric oxide synthase inhibitor on optic nerve head circulation in conscious rabbits. Invest Ophthalmol Vis Sci 41:1149–1152

    CAS  PubMed  Google Scholar 

  40. Ueeda M, Silvia SK, Olsson RA (1992) Nitric oxide modulates coronary autoregulation in the guinea pig. Circ Res 70:1296–1303

    Article  CAS  PubMed  Google Scholar 

  41. Koller A, Huang A, Sun D, Kaley G (1995) Exercise training augments flow-dependent dilation in rat skeletal muscle arterioles. Role of endothelial nitric oxide and prostaglandins. Circ Res 76:544–550

    Article  CAS  PubMed  Google Scholar 

  42. Nickenig G (2004) Should angiotensin II receptor blockers and statins be combined? Circulation 110:1013–1020. https://doi.org/10.1161/01.cir.0000139857.85424.45

    Article  PubMed  Google Scholar 

  43. Catt KJ, Cain MD, Zimmet PZ, Cran E (1969) Blood angiotensin II levels of normal and hypertensive subjects. Br Med J 1:819–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nickenig G, Jung O, Strehlow K, Zolk O, Linz W, Scholkens BA, Bohm M (1997) Hypercholesterolemia is associated with enhanced angiotensin AT1-receptor expression. Am J Phys 272:H2701–H2707

    CAS  Google Scholar 

  45. Jayakody L, Senaratne M, Thomson A, Kappagoda T (1987) Endothelium-dependent relaxation in experimental atherosclerosis in the rabbit. Circ Res 60:251–264

    Article  CAS  PubMed  Google Scholar 

  46. Panza JA, Quyyumi AA, Brush JE Jr, Epstein SE (1990) Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med 323:22–27. https://doi.org/10.1056/nejm199007053230105

    Article  CAS  PubMed  Google Scholar 

  47. Konishi M, Su C (1983) Role of endothelium in dilator responses of spontaneously hypertensive rat arteries. Hypertension 5:881–886

    Article  CAS  PubMed  Google Scholar 

  48. Yang BC, Phillips MI, Mohuczy D, Meng H, Shen L, Mehta P, Mehta JL (1998) Increased angiotensin II type 1 receptor expression in hypercholesterolemic atherosclerosis in rabbits. Arterioscler Thromb Vasc Biol 18:1433–1439

    Article  CAS  PubMed  Google Scholar 

  49. Ferrari-Dileo G, Davis EB, Anderson DR (1991) Angiotensin II binding receptors in retinal and optic nerve head blood vessels. An autoradiographic approach. Invest Ophthalmol Vis Sci 32:21–26

    CAS  PubMed  Google Scholar 

  50. Regrigny O, Atkinson J, Capdeville-Atkinson C, Liminana P, Chillon JM (2000) Effect of lovastatin on cerebral circulation in spontaneously hypertensive rats. Hypertension 35:1105–1110

    Article  CAS  PubMed  Google Scholar 

  51. Carod-Artal FJ (2006) Statins and cerebral vasomotor reactivity: implications for a new therapy? Stroke 37:2446–2448. https://doi.org/10.1161/01.STR.0000239656.59618.d4

    Article  PubMed  Google Scholar 

  52. Nagaoka T, Takahashi A, Sato E, Izumi N, Hein TW, Kuo L, Yoshida A (2006) Effect of systemic administration of simvastatin on retinal circulation. Arch Ophthalmol 124:665–670. https://doi.org/10.1001/archopht.124.5.665

    Article  CAS  PubMed  Google Scholar 

  53. Nagaoka T, Hein TW, Yoshida A, Kuo L (2007) Simvastatin elicits dilation of isolated porcine retinal arterioles: role of nitric oxide and mevalonate-rho kinase pathways. Invest Ophthalmol Vis Sci 48:825–832. https://doi.org/10.1167/iovs.06-0856

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Chiaki Nishimura for statistical consultation and Editage Author Services for editing this manuscript.

Design and conduct of study

R.H. and T.M. Data collection: R.H. and T.M. Management, analysis, and interpretation of data: R.H., T.S., U.M., and T.M. Preparation, review, or approval of the manuscript: R.H., T.S., M.U., and T.M.

Funding

No funding was received for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryuya Hashimoto.

Ethics declarations

Disclosure of potential conflicts of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

All procedures performed in the studies involving human participants were in accordance with the institutional review board of Toho University Sakura Medical Center and with the 1964 Helsinki Declaration.

Informed consent

Informed consent was obtained from all participants included in the study.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashimoto, R., Sugiyama, T., Ubuka, M. et al. Impairment of autoregulation of optic nerve head blood flow during vitreous surgery in patients with hypertension and hyperlipidemia. Graefes Arch Clin Exp Ophthalmol 255, 2227–2235 (2017). https://doi.org/10.1007/s00417-017-3788-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-017-3788-5

Keywords

Navigation