Skip to main content

Advertisement

Log in

CTG18.1 repeat expansion may reduce TCF4 gene expression in corneal endothelial cells of German patients with Fuchs’ dystrophy

  • Genetics
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

It was the aim of this investigation to elucidate the functional effects of CTG18.1 trinucleotide repeat expansion and the polymorphism rs613872 in the transcription factor 4 (TCF4) in corneas of patients affected by Fuchs’ endothelial corneal dystrophy (FECD).

Methods

Sixty-one unrelated German patients with FECD and 113 unaffected controls were investigated and genotyped for the CTG18.1 locus by triplet primed PCR (TP-PCR) and the rs613872 polymorphism via Sanger sequencing and by employing genomic DNA from peripheral blood leucocytes. DNA and RNA retrieved from human corneal endothelial explants were examined for alterations in the gene expression of TCF4, ZEB1, E-cadherin, N-cadherin, as well as the CTG18.1 locus.

Results

The CTG18.1 trinucleotide repeat expansion (>50 repeats) was detected in the peripheral blood in 77% of affected FECD patients and 11.5% of the healthy volunteers. Applying the TP-PCR method, the length of CTG18.1 repeat expansions correlates in the blood and corneal cells. We noted that the CTG18.1 trinucleotide repeat expansion was associated with reduced TCF4 and ZEB1 gene expression, especially in the explanted corneal endothelial cells. While E-cadherin gene expression was not detected in any corneal endothelial cells, expression of CDH2 (N-cadherin) was detected in FECD-affected endothelium and in our controls.

Conclusions

The CTG18.1 repeat expansion may reduce gene expression of TCF4 and ZEB1, suggesting that a mechanism triggering a loss of function may contribute to FECD. The correlation of CTG18.1 repeat expansion from blood and the cornea may represent the first step toward investigating the potential relevance of testing the blood of cornea donors to minimize the risk of transplanting grafts potentially affected with FECD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wilson SE, Bourne WM (1988) Fuchs’ dystrophy. Cornea 7:2–18

    Article  CAS  PubMed  Google Scholar 

  2. Eye Bank Association of America (2015) Eye banking statistical report. EBAA, Washington, DC

    Google Scholar 

  3. Chi HH, Teng CC, Katzin HM (1958) Histopathology of primary endothelial-epithelial dystrophy of the cornea. Am J Ophthalmol 45:518–535

    Article  CAS  PubMed  Google Scholar 

  4. Tan JC, Holland SP, Dubord PJ, Moloney G, McCarthy M, Yeung SN (2014) Evolving indications for and trends in keratoplasty in British Columbia, Canada, from 2002 to 2011: a 10-year review. Cornea 33:252–256. doi:10.1097/ICO.0000000000000066

    Article  PubMed  Google Scholar 

  5. Keenan TD, Jones MN, Rushton S, Carley FM (2012) Trends in the indications for corneal graft surgery in the United Kingdom: 1999 through 2009. Arch Ophthalmol 130:621–628. doi:10.1001/archophthalmol.2011.2585

    Article  PubMed  Google Scholar 

  6. Price MO, Price FW Jr (2013) Descemet’s membrane endothelial keratoplasty surgery: update on the evidence and hurdles to acceptance. Curr Opin Ophthalmol 24:329–335. doi:10.1097/ICU.0b013e32836229ab

    Article  PubMed  Google Scholar 

  7. Gottsch JD, Sundin OH, Liu SH, Broman KW, Stark WJ, Vito EC, Narang AK, Thompson JM (2005) Inheritance of a novel COL8A2 mutation defines a distinct early-onset subtype of Fuchs corneal dystrophy. Invest Ophthalmol Vis Sci 46:1934–1939. doi:10.1167/iovs.04-0937

    Article  PubMed  Google Scholar 

  8. Vithana EN, Morgan P, Sundaresan P, Ebenezer ND, Tan DT, Mohamed MD, Anand S, Khine KO, Venkataraman D, Yong VH, Salto-Tellez M, Venkatraman A, Guo K, Hemadevi B, Srinivasan M, Prajna V, Khine M, Casey JR, Inglehearn CF, Aung T (2006) Mutations in sodium-borate cotransporter SLC4A11 cause recessive congenital hereditary endothelial dystrophy (CHED2). Nat Genet 38:755–757. doi:10.1038/ng1824

    Article  CAS  PubMed  Google Scholar 

  9. Riazuddin SA, Vasanth S, Katsanis N, Gottsch JD (2013) Mutations in AGBL1 cause dominant late-onset Fuchs corneal dystrophy and alter protein-protein interaction with TCF4. Am J Hum Genet 93:758–764. doi:10.1016/j.ajhg.2013.08.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Riazuddin SA, Zaghloul NA, Al-Saif A, Davey L, Diplas BH, Meadows DN, Eghrari AO, Minear MA, Li YJ, Klintworth GK, Afshari N, Gregory SG, Gottsch JD, Katsanis N (2010) Missense mutations in TCF8 cause late-onset Fuchs corneal dystrophy and interact with FCD4 on chromosome 9p. Am J Hum Genet 86:45–53. doi:10.1016/j.ajhg.2009.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Riazuddin SA, Parker DS, McGlumphy EJ, Oh EC, Iliff BW, Schmedt T, Jurkunas U, Schleif R, Katsanis N, Gottsch JD (2012) Mutations in LOXHD1, a recessive-deafness locus, cause dominant late-onset Fuchs corneal dystrophy. Am J Hum Genet 90:533–539. doi:10.1016/j.ajhg.2012.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Baratz KH, Tosakulwong N, Ryu E, Brown WL, Branham K, Chen W, Tran KD, Schmid-Kubista KE, Heckenlively JR, Swaroop A, Abecasis G, Bailey KR, Edwards AO (2010) E2-2 protein and Fuchs’s corneal dystrophy. N Engl J Med 363:1016–1024. doi:10.1056/NEJMoa1007064

    Article  CAS  PubMed  Google Scholar 

  13. Igo RP Jr, Kopplin LJ, Joseph P, Truitt B, Fondran J, Bardenstein D, Aldave AJ, Croasdale CR, Price MO, Rosenwasser M, Lass JH, Iyengar SK (2012) FECD genetics multi-center study group. Differing roles for TCF4 and COL8A2 in central corneal thickness and fuchs endothelial corneal dystrophy. PLoS One 7:e46742. doi:10.1371/journal.pone.0046742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li YJ, Minear MA, Rimmler J, Zhao B, Balajonda E, Hauser MA, Allingham RR, Eghrari AO, Riazuddin SA, Katsanis N, Gottsch JD, Gregory SG, Klintworth GK, Afshari NA (2011) Replication of TCF4 through association and linkage studies in late-onset Fuchs endothelial corneal dystrophy. PLoS One 6:e18044. doi:10.1371/journal.pone.0018044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stamler JF, Roos BR, Wagoner MD, Goins KM, Kitzmann AS, Riley JB, Stone EM, Fingert JH (2013) Confirmation of the association between the TCF4 risk allele and Fuchs endothelial corneal dystrophy in patients from the Midwestern United States. Ophthalmic Genet 34:32–34. doi:10.3109/13816810.2012.726396

    Article  CAS  PubMed  Google Scholar 

  16. Ołdak M, Ruszkowska E, Udziela M, Oziębło D, Bińczyk E, Ścieżyńska A, Płoski R, Szaflik JP (2015) Fuchs endothelial corneal dystrophy: strong association with rs613872 not paralleled by changes in corneal endothelial TCF4 mRNA level. Biomed Res Int 2015:640234. doi:10.1155/2015/640234

    PubMed  PubMed Central  Google Scholar 

  17. Wieben ED, Aleff RA, Tosakulwong N, Butz ML, Highsmith WE, Edwards AO, Baratz KH (2012) A common trinucleotide repeat expansion within the transcription factor 4 (TCF4, E2-2) gene predicts Fuchs corneal dystrophy. PLoS One 7:e49083. doi:10.1371/journal.pone.0049083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wieben ED, Aleff RA, Eckloff BW, Atkinson EJ, Baheti S, Middha S, Brown WL, Patel SV, Kocher JP, Baratz KH (2014) Comprehensive assessment of genetic variants within TCF4 in Fuchs’ endothelial corneal dystrophy. Invest Ophthalmol Vis Sci 55(6101–7):6101–6107. doi:10.1167/iovs.14-14958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mootha VV, Gong X, Ku HC, Xing C (2014) Association and familial segregation of CTG18.1 trinucleotide repeat expansion of TCF4 gene in Fuchs’ endothelial corneal dystrophy. Invest Ophthalmol Vis Sci 55:33–42. doi:10.1167/iovs.13-12611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xing C, Gong X, Hussain I, Khor CC, Tan DT, Aung T, Mehta JS, Vithana EN, Mootha VV (2014) Transethnic replication of association of CTG18.1 repeat expansion of TCF4 gene with Fuchs’ corneal dystrophy in Chinese implies common causal variant. Invest Ophthalmol Vis Sci 55:7073–7078. doi:10.1167/iovs.14-15390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jalimarada SS, Ogando DG, Bonanno JA (2014) Loss of ion transporters and increased unfolded protein response in Fuchs’ dystrophy. Mol Vis 20:1668–1679

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Sobrado VR, Moreno-Bueno G, Cubillo E, Holt LJ, Nieto MA, Portillo F, Cano A (2009) The class I bHLH factors E2-2A and E2-2B regulate EMT. J Cell Sci 122:1014–1024. doi:10.1242/jcs.028241

    Article  CAS  PubMed  Google Scholar 

  23. Forrest MP, Waite AJ, Martin-Rendon E, Blake DJ (2013) Knockdown of human TCF4 affects multiple signaling pathways involved in cell survival, epithelial to mesenchymal transition and neuronal differentiation. PLoS One 8:e73169. doi:10.1371/journal.pone.0073169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15:178–196. doi:10.1038/nrm3758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wright AF, Dhillon B (2010) Major progress in Fuchs’s corneal dystrophy. N Engl J Med 363:1072–1075. doi:10.1056/NEJMe1007495

    Article  CAS  PubMed  Google Scholar 

  26. Gottsch JD, Zhang C, Sundin OH, Bell WR, Stark WJ, Green WR (2005) Fuchs corneal dystrophy: aberrant collagen distribution in an L450W mutant of the COL8A2 gene. Invest Ophthalmol Vis Sci 46:4504–4511. doi:10.1167/iovs.05-0497

    Article  PubMed  Google Scholar 

  27. Schmedt T, Silva MM, Ziaei A, Jurkunas U (2012) Molecular bases of corneal endothelial dystrophies. Exp Eye Res 95:24–34. doi:10.1016/j.exer.2011.08.002

    Article  CAS  PubMed  Google Scholar 

  28. Iliff BW, Riazuddin SA, Gottsch JD (2012) The genetics of Fuchs’ corneal dystrophy. Expert Rev Ophthalmol 7:363–375. doi:10.1586/eop.12.39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cano A, Portillo F (2010) An emerging role for class I bHLH E2-2 proteins in EMT regulation and tumour progression. Cell Adhes Migr 4:528–544

    Article  Google Scholar 

  30. Gupta R, Kumawat BL, Paliwal P, Tandon R, Sharma N, Sen S, Kashyap S, Nag TC, Vajpayee RB, Sharma A (2015) Association of ZEB1 and TCF4 rs613872 changes with late onset Fuchs endothelial corneal dystrophy in patients from northern India. Mol Vis 21:1252–1260

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Luther M, Grünauer-Kloevekorn C, Weidle E, Passarge E, Rupprecht A, Hoffmann K, Foja S (2016) TGC repeats in intron 2 of the TCF4 Gene have a good predictive power regarding to Fuchs endothelial corneal dystrophy. Klin Monatsbl Augenheilkd 233:187–194. doi:10.1055/s-0035-1546138

    CAS  PubMed  Google Scholar 

  32. Riazuddin SA, McGlumphy EJ, Yeo WS, Wang J, Katsanis N, Gottsch JD (2011) Replication of the TCF4 intronic variant in late-onset Fuchs corneal dystrophy and evidence of independence from the FCD2 locus. Invest Ophthalmol Vis Sci 52:2825–2829. doi:10.1167/iovs.10-6497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Du J, Aleff RA, Soragni E, Kalari K, Nie J, Tang X, Davila J, Kocher JP, Patel SV, Gottesfeld JM, Baratz KH, Wieben ED (2015) RNA toxicity and Missplicing in the common eye disease Fuchs endothelial corneal dystrophy. J Biol Chem 290:5979–5990. doi:10.1074/jbc.M114.621607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mootha VV, Hussain I, Cunnusamy K, Graham E, Gong X, Neelam S, Xing C, Kittler R, Petroll WM (2015) TCF4 triplet repeat expansion and nuclear RNA foci in Fuchs’ endothelial corneal dystrophy. Invest Ophthalmol Vis Sci 56:2003–2011. doi:10.1167/iovs.14-16222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Matthaei M, Zhu AY, Kallay L, Eberhart CG, Cursiefen C, Jun AS (2014) Transcript profile of cellular senescence-related genes in Fuchs endothelial corneal dystrophy. Exp Eye Res 129:13–17. doi:10.1016/j.exer.2014.10.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Aldave AJ, Han J, Frausto RF (2013) Genetics of the corneal endothelial dystrophies: an evidence-based review. Clin Genet 84:109–119. doi:10.1111/cge.12191

    Article  CAS  PubMed  Google Scholar 

  37. Sepp M, Kannike K, Eesmaa A, Urb M, Timmusk T (2011) Functional diversity of human basic helix-loop-helix transcription factor TCF4 isoforms generated by alternative 5′ exon usage and splicing. PLoS One 6:e22138. doi:10.1371/journal.pone.0022138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Krafchak CM, Pawar H, Moroi SE, Sugar A, Lichter PR, Mackey DA, Mian S, Nairus T, Elner V, Schteingart MT, Downs CA, Kijek TG, Johnson JM, Trager EH, Rozsa FW, Mandal MN, Epstein MP, Vollrath D, Ayyagari R, Boehnke M, Richards JE (2005) Mutations in TCF8 cause posterior polymorphous corneal dystrophy and ectopic expression of COL4A3 by corneal endothelial cells. Am J Hum Genet 77:694–708. doi:10.1086/497348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Qu J, Li M, An J, Zhao B, Zhong W, Gu Q, Cao L, Yang H, Hu C (2015) MicroRNA-33b inhibits lung adenocarcinoma cell growth, invasion, and epithelial-mesenchymal transition by suppressing Wnt/β-catenin/ZEB1 signaling. Int J Oncol 47:2141–2152. doi:10.3892/ijo.2015.3187

    CAS  PubMed  Google Scholar 

  40. Li X, Gao D, Wang H, Li X, Yang J, Yan X, Liu Z, Ma Z (2015) Negative feedback loop between p66Shc and ZEB1 regulates fibrotic EMT response in lung cancer cells. Cell Death Dis 6:e1708. doi:10.1038/cddis.2015.74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sánchez-Tilló E, de Barrios O, Siles L, Cuatrecasas M, Castells A, Postigo A (2011) β-catenin/TCF4 complex induces the epithelial-to-mesenchymal transition (EMT)-activator ZEB1 to regulate tumor invasiveness. Proc Natl Acad Sci U S A 108:19204–19209. doi:10.1073/pnas.1108977108

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yu WY, Sheridan C, Grierson I, Mason S, Kearns V, Lo AC, Wong D (2011) Progenitors for the corneal endothelium and trabecular meshwork: a potential source for personalized stem cell therapy in corneal endothelial diseases and glaucoma. Biomed Biotechnol 2011:412743. doi:10.1155/2011/412743

    Google Scholar 

  43. Van Aken E, Papeleu P, De Potter P, De Laey JJ, Mareel M (2000) Cadherin expression in the eye. Bull Soc Belge Ophtalmol 278:55–59

    Google Scholar 

  44. Nollet F, Kools P, van Roy F (2000) Phylogenetic analysis of the cadherin superfamily allows dentification of six major subfamilies besides several solitary members. J Mol Biol 299:551–572. doi:10.1006/jmbi.2000.3777

    Article  CAS  PubMed  Google Scholar 

  45. Gerhardt H, Liebner S, Redies C, Wolburg H (1999) N-cadherin expression in endothelial cells during early angiogenesis in the eye and brain of the chicken: relation to blood-retina and blood-brain barrier development. Eur J Neurosci 11:1191–1201

    Article  CAS  PubMed  Google Scholar 

  46. Zhu AY, Eberhart CG, Jun AS (2014) Fuchs endothelial corneal dystrophy: a neurodegenerative disorder? JAMA Ophthalmol 132:377–378. doi:10.1001/jamaophthalmol.2013.7993

    Article  PubMed  PubMed Central  Google Scholar 

  47. Johnston MC, Noden OM, Hazelton RO, Coulombre JL, Coulombre AJ (1979) Origins of avian ocular and periocular tissues. Exp Eye Res 29:27–43

    Article  CAS  PubMed  Google Scholar 

  48. Hatou S, Yoshida S, Higa K, Miyashita H, Inagaki E, Okano H, Tsubota K, Shimmura S (2013) Functional corneal endothelium derived from corneal stroma stem cells of neural crest origin by retinoic acid and Wnt/β-catenin signaling. Stem Cells Dev 22:828–839. doi:10.1089/scd.2012.0286

    Article  CAS  PubMed  Google Scholar 

  49. McCartney ACE, Kirkness CM (1988) Comparison between posterior polymorphous dystrophy and congenital hereditary endothelial dystrophy of the cornea. Eye 2:63–70. doi:10.1038/eye.1988.14

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Foja.

Ethics declarations

Funding

No- funding was received for this research.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria, educational grants, participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foja, S., Luther, M., Hoffmann, K. et al. CTG18.1 repeat expansion may reduce TCF4 gene expression in corneal endothelial cells of German patients with Fuchs’ dystrophy. Graefes Arch Clin Exp Ophthalmol 255, 1621–1631 (2017). https://doi.org/10.1007/s00417-017-3697-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-017-3697-7

Keywords

Navigation