Skip to main content

Advertisement

Log in

Combined silencing of TGF-β2 and Snail genes inhibit epithelial-mesenchymal transition of retinal pigment epithelial cells under hypoxia

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

The formation of scar-like fibrous tissue in age-related macular degeneration (AMD) is associated with hypoxia. Under hypoxia, retinal pigment epithelial (RPE) cells can secret more transforming growth factor-β2 (TGF-β2), which is determined to induce epithelial-mesenchymal transition (EMT) at certain concentrations. Whether hypoxia can induce EMT by stimulating RPE cell line secrets TGF-β2 or not remains unknown. To gain a better understanding of the signaling mechanisms of fibrosis in AMD under hypoxic conditions, we investigated EMT in retinal pigment epithelial (RPE) cells and the effect of TGF-β2 and Snail in this process.

Methods

Human RPE cell line (ARPE-19) was incubated with 5 % O2 for different periods of time. The expression of N-cadherin, α-smooth muscle actin (α-SMA), TGF-β2 , and Snail were determined by Western blot and real-time PCR. Cell proliferation was assessed by CCK8 kit. RNA interference was used for multi-gene silencing of TGF-β2 and Snail genes.

Results

N-cadherin was decreased and mesenchymal cell marker α-SMA was increased after the ARPE-19 cell line was incubated with 5 % O2. Meanwhile, the proliferation capability of the cell line was increased. TGF-β2 and Snail expression were increased in a time-dependent manner under hypoxia. After multi-silencing TGF-β2 and Snail genes, N-cadherin was increased and α-SMA was reduced. Meanwhile, the proliferation of the cell line was suppressed.

Conclusions

Under hypoxic conditions, RPE cells undergo EMT. Endogenic TGF-β2 and Snail are involved in this process. Furthermore, knockdown of both TGF-β2 and Snail inhibited EMT to a greater extent than knockdown of either gene individually.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Singer M (2014) Advances in the management of macular degeneration. F1000Prime Rep 6:29. doi: 10.12703/P6-29

  2. Jager RD, Mieler WF, Miller JW (2008) Age-related macular degeneration. N Engl J Med 358:2606–2617

    Article  CAS  PubMed  Google Scholar 

  3. Blasiak J, Petrovski G, Veréb Z, Facskó A, Kaarniranta K (2014) Oxidative stress, hypoxia, and autophagy in the neovascular processes of age-related macular degeneration. Biomed Res Int 2014:768026. doi:10.1155/2014/768026

    Article  PubMed Central  PubMed  Google Scholar 

  4. Piera-Velazquez S, Li Z, Jimenez SA (2011) Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol 179:1074–1080

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Biol 7:131–142

    Article  CAS  PubMed  Google Scholar 

  6. Kriz W, Kaissling B, Le Hir M (2011) Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy? J Clin Invest 121:468

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Pereira TN, Walsh MJ, Lewindon PJ, Ramm GA (2010) Paediatric cholestatic liver disease: diagnosis, assessment of disease progression and mechanisms of fibrogenesis. World J Gastrointest Pathophysiol 1:69

    Article  PubMed Central  PubMed  Google Scholar 

  8. Chen Y, Ge W, Xu L, Qu C, Zhu M, Zhang W, Xiao Y (2012) miR-200b is involved in intestinal fibrosis of Crohn’s disease. Int J Mol Med 29:601–606

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Lee H, O’Meara SJ, O’Brien C, Kane R (2007) The role of gremlin, a BMP antagonist, and epithelial-to-mesenchymal transition in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 48:4291–4299

    Article  PubMed  Google Scholar 

  10. Vervoort SJ, Lourenço AR, van Boxtel R, Coffer PJ (2013) SOX4 mediates TGF-β-induced expression of mesenchymal markers during mammary cell epithelial to mesenchymal transition. PLoS One 8:e53238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Lou C, Zhang F, Yang M, Zhao J, Zeng W, Fang X, Zhang Y, Zhang C, Liang W (2012) Naringenin decreases invasiveness and metastasis by inhibiting TGF-β-induced epithelial to mesenchymal transition in pancreatic cancer cells. PLoS One 7:e50956

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Jang Y-H, Shin H-S, Choi HS, Ryu E-S, Kim MJ, Min SK, Lee J-H, Lee HK, Kim K-H, Kang D-H (2013) Effects of dexamethasone on the TGF-β1-induced epithelial-to-mesenchymal transition in human peritoneal mesothelial cells. Lab Investig 93:194–206

    Article  CAS  PubMed  Google Scholar 

  13. Liu S-F, Chang S-Y, Lee T-C, Chuang L-Y, Guh J-Y, Hung C-Y, Hung T-J, Hung Y-J, Chen P-Y, Hsieh P (2012) Dioscorea alata attenuates renal interstitial cellular fibrosis by regulating Smad-and epithelial-mesenchymal transition signaling pathways. PLoS One 7:e47482

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Hirase K, Ikeda T, Sotozono C, Nishida K, Sawa H, Kinoshita S (1998) Transforming growth factor β2 in the vitreous in proliferative diabetic retinopathy. Arch Ophthalmol 116:738–741

    Article  CAS  PubMed  Google Scholar 

  15. Parapuram SK, Chang B, Li L, Hartung RA, Chalam KV, Nair-Menon JU, Hunt DM, Hunt RC (2009) Differential Effects of TGFβ and vitreous on the transformation of retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 50:5965–5974. doi:10.1167/iovs.09-3621

    Article  PubMed  Google Scholar 

  16. Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K (2002) Two major Smad pathways in TGF‐β superfamily signalling. Genes to Cells 7:1191–1204

    Article  CAS  PubMed  Google Scholar 

  17. Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M, Hung M-C (2004) Dual regulation of Snail by GSK-3 [beta]-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol 6:931–940

    Article  CAS  PubMed  Google Scholar 

  18. Boulay JL, Dennefeld C, Alberga A (1987) The Drosophila developmental gene snail encodes a protein with nucleic acid binding fingers. Nature 330:395–398

    Article  CAS  PubMed  Google Scholar 

  19. Cano A, Pérez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA (2000) The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2:76–83. doi:10.1038/35000025

    Article  CAS  PubMed  Google Scholar 

  20. Ohkubo T, Ozawa M (2004) The transcription factor Snail downregulates the tight junction components independently of E-cadherin downregulation. J Cell Sci 117:1675–1685

    Article  CAS  PubMed  Google Scholar 

  21. Hirasawa M, Noda K, Noda S, Suzuki M, Ozawa Y, Shinoda K, Inoue M, Ogawa Y, Tsubota K, Ishida S (2011) Transcriptional factors associated with epithelial-mesenchymal transition in choroidal neovascularization.

  22. Jamora C, Lee P, Kocieniewski P, Azhar M, Hosokawa R, Chai Y, Fuchs E (2004) A signaling pathway involving TGF-β2 and snail in hair follicle morphogenesis. PLoS Biol 3:e11

    Article  PubMed Central  PubMed  Google Scholar 

  23. Romano LA, Runyan RB (2000) Slug is an essential target of TGFbeta2 signaling in the developing chicken heart. Dev Biol 223:91–102. doi:10.1006/dbio.2000.9750

    Article  CAS  PubMed  Google Scholar 

  24. HJ Cho, Baek KE FAU Saika S, Saika S FAU Jeong M-J, Jeong MJ FAU Yoo J, J Y Snail is required for transforming growth factor-beta-induced epithelial-mesenchymal transition by activating PI3 kinase/Akt signal pathway

  25. Juhasz A, Ge Y, Markel S, Chiu A, Matsumoto L, Van Balgooy J, Roy K, Doroshow JH (2009) Expression of NADPH oxidase homologues and accessory genes in human cancer cell lines, tumours and adjacent normal tissues. Free Radic Res 43:523–532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Findlay VJ, Wang C, Watson DK, Camp ER (2014) Epithelial-to-mesenchymal transition and the cancer stem cell phenotype: insights from cancer biology with therapeutic implications for colorectal cancer. Cancer Gene Ther. doi:10.1038/cgt.2014.15

    PubMed Central  PubMed  Google Scholar 

  27. Nickel A, Stadler SC (2014) Role of epigenetic mechanisms in epithelial-to-mesenchymal transition of breast cancer cells. Transl Res. doi:10.1016/j.trsl.2014.04.001

    PubMed  Google Scholar 

  28. Gressner OA, Gao C (2014) Monitoring fibrogenic progression in the liver. Clin Chim Acta 433C:111–122. doi:10.1016/j.cca.2014.02.021

    Article  Google Scholar 

  29. Hoerster R, Muether PS, Vierkotten S, Hermann MM, Kirchhof B, Fauser S (2014) Upregulation of TGF-ß1 in experimental proliferative vitreoretinopathy is accompanied by epithelial to mesenchymal transition. Graefes Arch Clin Exp Ophthalmol 252:11–6. doi:10.1007/s00417-013-2377-5

    Article  CAS  PubMed  Google Scholar 

  30. Xu T, Yu C-Y, Sun J, Liu Y, Wang X, Pi L, Tian Y-Q, Zhang X (2011) Bone morphogenetic protein-4-induced epithelial-mesenchymal transition and invasiveness through Smad1-mediated signal pathway in squamous cell carcinoma of the head and neck. Arch Med Res 42:128–137. doi:10.1016/j.arcmed.2011.03.003

    Article  CAS  PubMed  Google Scholar 

  31. Li H, Wang H, Wang F, Gu Q, Xu X (2011) Snail involves in the transforming growth factor β1-mediated epithelial-mesenchymal transition of retinal pigment epithelial cells. PLoS One 6:e23322. doi:10.1371/journal.pone.0023322

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Klaver CCW, van Leeuwen R, Vingerling JR, de Jong PTVM (2004) Epidemiology of age-related maculopathy: a review. Age-related macular Degener. Springer, pp 1–22

  33. Carl S, Stephanie P, Paul H, David W, David P, David K (2009) Expression of hypoxia-inducible factor-1a and -2a in human choroidal neovascular membranes. Graefe’s Arch Clin Exp Ophthalmol 247:1361

    Article  Google Scholar 

  34. Meng Q, Guo H, Xiao L, Cui Y, Guo R, Xiao D, Huang Y (2013) mTOR regulates TGF-β2-induced epithelial-mesenchymal transition in cultured human lens epithelial cells. Graefes Arch Clin Exp Ophthalmol 251:2363–70. doi:10.1007/s00417-013-2435-z

    Article  CAS  PubMed  Google Scholar 

  35. Palma-Nicolás JP, López-Colomé AM (2013) Thrombin induces slug-mediated E-cadherin transcriptional repression and the parallel up-regulation of N-cadherin by a transcription-independent mechanism in RPE cells. J Cell Physiol 228:581–9. doi:10.1002/jcp.24165

    Article  PubMed  Google Scholar 

  36. Bailey TA, Kanuga N, Romero IA, Greenwood J, Luthert PJ, Cheetham ME (2004) Oxidative stress affects the junctional integrity of retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 45:675–684

    Article  PubMed  Google Scholar 

  37. Davis AA, Bernstein PS, Bok D, Turner J, Nachtigal M, Hunt RC (1995) A human retinal pigment epithelial cell line that retains epithelial characteristics after prolonged culture. Invest Ophthalmol Vis Sci 36:955–964

    CAS  PubMed  Google Scholar 

  38. Burke JM (2008) Epithelial phenotype and the RPE: is the answer blowing in the Wnt? Prog Retin Eye Res 27:579–595

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Burke JM, Cao F, Irving PE, Skumatz CMB (1999) Expression of E-cadherin by human retinal pigment epithelium: delayed expression in vitro. Invest Ophthalmol Vis Sci 40:2963–2970

    CAS  PubMed  Google Scholar 

  40. Chen H-C, Zhu Y-T, Chen S-Y, Tseng SCG (2012) Wnt signaling induces epithelial-mesenchymal transition with proliferation in ARPE-19 cells upon loss of contact inhibition. Lab Invest 92:676–87. doi:10.1038/labinvest.2011.201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Tanihara H, Yoshida M, Matsumoto M, Yoshimura N (1993) Identification of transforming growth factor-beta expressed in cultured human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 34:413–9

    CAS  PubMed  Google Scholar 

  42. Matsumoto M, Yoshimura N, Honda Y (1994) Increased production of transforming growth factor-beta 2 from cultured human retinal pigment epithelial cells by photocoagulation. Invest Ophthalmol Vis Sci 35:4245–52

    CAS  PubMed  Google Scholar 

  43. Yu AL, Fuchshofer R, Kook D, Kampik A, Bloemendal H, Welge-Lüssen U (2009) Subtoxic oxidative stress induces senescence in retinal pigment epithelial cells via TGF-beta release. Invest Ophthalmol Vis Sci 50:926–35. doi:10.1167/iovs. 07-1003

    Article  PubMed  Google Scholar 

  44. Li H, Li M, Xu D, Zhao C, Liu G, Wang F(2014) Overexpression of Snail in retinal pigment epithelial triggered epithelial-mesenchymal transition. Biochem Biophys Res Commun: 446:347-51

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaomei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Z., Li, R., Shi, H. et al. Combined silencing of TGF-β2 and Snail genes inhibit epithelial-mesenchymal transition of retinal pigment epithelial cells under hypoxia. Graefes Arch Clin Exp Ophthalmol 253, 875–884 (2015). https://doi.org/10.1007/s00417-014-2922-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-014-2922-x

Keywords

Navigation