Skip to main content

Advertisement

Log in

Optical coherence tomography shows early loss of the inferior temporal quadrant retinal nerve fiber layer in autosomal dominant optic atrophy

  • Neurophthalmology
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The aim of the study was to evaluate the relationship between visual function and retinal nerve fiber layer thickness (RNFLT) determined using Stratus optical coherence tomography (OCT) in patients with autosomal dominant optic atrophy (ADOA).

Methods

The study was a retrospective, institutional, and comparative case series. Thirty-six consecutive patients with ADOA and 72 age-matched normal controls were compared with regard to RNFLT, best-corrected visual acuity (BCVA), and visual field.

Results

The relative reduction of RNFLT of ADOA patients was most evident in the temporal quadrant (56.8 %), followed by the inferior (35.5 %), superior (27.2 %), and nasal quadrants (26.4 %). In ADOA patients, BCVA decreased with RNFL thinning (p < 0.001), and was not related to age (p = 0.210). Papillomacular bundle RNFLT decreased with age throughout the study period of 3.7 ± 2.3 years (−3.83 ± 9.96 μm, p = 0.017). The presence of a superotemporal central scotoma (61.1 %) was related to decreased inferotemporal RNFLT (7 and 8 o’clock, p = 0.016 and p = 0.036, respectively).

Conclusions

The papillomacular bundle RNFL of ADOA is most vulnerable and progressively damaged with age, despite early temporal RNFL loss. Early loss of inferior temporal RNFL in ADOA is related to superotemporal central scotoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kjer P (1959) Infantile optic atrophy with dominant mode of inheritance: a clinical and genetic study of 19 Danish families. Acta Ophthalmol (Copenh) 164:1–147

    CAS  Google Scholar 

  2. Teesalu P, Tuulonen A, Airaksinen PJ (2000) Optical coherence tomography and localized defects of the retinal nerve fiber layer. Acta Ophthalmol Scand 78:49–52

    Article  CAS  PubMed  Google Scholar 

  3. Votruba M, Thiselton D, Bhattacharya SS (2003) Optic disc morphology of patients with OPA1 autosomal dominant optic atrophy. Br J Ophthalmol 87:48–53

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Milea D, Sander B, Wegener M et al (2010) Axonal loss occurs early in dominant optic atrophy. Acta Ophthalmol 88:342–346

    Article  PubMed  Google Scholar 

  5. Kim TW, Hwang JM (2007) Stratus OCT in dominant optic atrophy: features differentiating it from glaucoma. J Glaucoma 16:655–658

    Article  PubMed  Google Scholar 

  6. Barboni P, Savini G, Parisi V et al (2011) Retinal nerve fiber layer thickness in dominant optic atrophy measurements by optical coherence tomography and correlation with age. Ophthalmology 118:2076–2080

    Article  PubMed  Google Scholar 

  7. Yu-Wai-Man P, Bailie M, Atawan A et al (2011) Pattern of retinal ganglion cell loss in dominant optic atrophy due to OPA1 mutations. Eye (Lond) 25:596–602

    Article  CAS  Google Scholar 

  8. Mikelberg FS, Drance SM, Schulzer M et al (1989) The normal human optic nerve. Axon count and axon diameter distribution. Ophthalmology 96:1325–1328

    Article  CAS  PubMed  Google Scholar 

  9. Pan BX, Ross-Cisneros FN, Carelli V et al (2012) Mathematically modeling the involvement of axons in Leber’s hereditary optic neuropathy. Invest Ophthalmol Vis Sci 53:7608–7617

    Article  PubMed Central  PubMed  Google Scholar 

  10. Jansonius NM, Nevalainen J, Selig B et al (2009) A mathematical description of nerve fiber bundle trajectories and their variability in the human retina. Vision Res 49:2157–2163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Johnston PB, Gaster RN, Smith VC et al (1979) A clinicopathologic study of autosomal dominant optic atrophy. Am J Ophthalmol 88:868–875

    Article  CAS  PubMed  Google Scholar 

  12. Kjer P, Jensen OA, Klinken L (1983) Histopathology of eye, optic nerve and brain in a case of dominant optic atrophy. Acta Ophthalmol (Copenh) 61:300–312

    Article  CAS  Google Scholar 

  13. Ito Y, Nakamura M, Yamakoshi T et al (2007) Reduction of inner retinal thickness in patients with autosomal dominant optic atrophy associated with OPA1 mutations. Invest Ophthalmol Vis Sci 48:4079–4086

    Article  PubMed  Google Scholar 

  14. Votruba M, Fitzke FW, Holder GE et al (1998) Clinical features in affected individuals from 21 pedigrees with dominant optic atrophy. Arch Ophthalmol 116:351–358

    Article  CAS  PubMed  Google Scholar 

  15. Wakakura M, Fujie W, Emoto Y (2009) Initial temporal field defect in Leber hereditary optic neuropathy. Jpn J Ophthalmol 53:603–607

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

None of the authors have any financial interests to disclose.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Min Hwang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S.W., Hwang, JM. Optical coherence tomography shows early loss of the inferior temporal quadrant retinal nerve fiber layer in autosomal dominant optic atrophy. Graefes Arch Clin Exp Ophthalmol 253, 135–141 (2015). https://doi.org/10.1007/s00417-014-2852-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-014-2852-7

Keywords

Navigation