Skip to main content

Advertisement

Log in

Inhibition of form-deprivation myopia by a GABAAOr receptor antagonist, (1,2,5,6-tetrahydropyridin-4-yl) methylphosphinic acid (TPMPA), in guinea pigs

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the effects of the relatively selective GABAAOr receptor antagonist (1,2,5,6-tetrahydropyridin-4-yl) methylphosphinic acid (TPMPA) on form-deprivation myopia (FDM) in guinea pigs.

Methods

A diffuser was applied monocularly to 30 guinea pigs from day 10 to 21. The animals were randomized to one of five treatment groups. The deprived eye received daily sub-conjunctival injections of 100 μl TPMPA at a concentration of (i) 0.03 %, ( ii) 0.3 %, or (iii) 1 %, a fourth group (iv) received saline injections, and another (v) no injections. The fellow eye was left untreated. An additional group received no treatment to either eye. Prior to and at the end of the treatment period, refraction and ocular biometry were performed.

Results

Visual deprivation produced relative myopia in all groups (treated versus untreated eyes, P < 0.05). The amount of myopia was significantly affected by the drug treatment (one-way ANOVA, P < 0.0001); myopia was less in deprived eyes receiving either 0.3 % or 1 % TPMPA (saline = −4.38 ± 0.57D, 0.3 % TPMPA = −3.00 ± 0.48D, P < 0.01; 1 % TPMPA = −0.88 ± 0.51D, P < 0.001). The degree of axial elongation was correspondingly less (saline = 0.13 ± 0.02 mm, 0.3 % TPMPA = 0.09 ± 0.01 mm, P < 0.01, 1 % TPMPA = 0.02 ± 0.01 mm, P < 0.001) as was the VC elongation (saline = 0.08 ± 0.01 mm, 0.3 % TPMPA = 0.05 ± 0.01 mm, P < 0.01, 1 % TPMPA = 0.01 ± 0.01 mm; P < 0.001). ACD and LT were not affected (one-way ANOVA, P > 0.05). One percent TPMPA was more effective at inhibiting myopia than 0.3 % (P < 0.01), and 0.03 % did not appreciably inhibit the myopia (0.03 % TPMPA versus saline, P > 0.05).

Conclusions

Sub-conjunctival injections of TPMPA inhibit FDM in guinea pig models in a dose-dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

TPMPA:

(1,2,5,6-tetrahydropyridin-4-yl) methylphosphinic acid

FDM:

Form-deprivation myopia

SER:

Spherical equivalent refraction

AL:

Axial length

VCD:

Vitreous chamber depth

ACD:

Anterior chamber depth

LT:

Lens thickness

RPE:

Retinal pigment epithelium.

References

  1. Ragozzino D, Woodward RM, Murata Y et al (1996) Design and in vitro pharmacology of a selective gamma-aminobutyric acidC receptor antagonist. Mol Pharmacol 50:1024–1030

    CAS  PubMed  Google Scholar 

  2. Olsen RW, Sieghart W (2008) International Union of Pharmacology. LXX. Subtypes of gamma-aminobutyric acid(A) receptors: classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol Rev 60:243–260

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Stone RA, Liu J, Sugimoto R et al (2003) GABA, experimental myopia, and ocular growth in chick. Invest Ophthalmol Vis Sci 44:3933–3946

    Article  PubMed  Google Scholar 

  4. Schmid KL, Strasberg G, Rayner CL, Hartfield PJ (2013) The effects and interactions of GABAergic and dopaminergic agents in the prevention of form deprivation myopia by brief periods of normal vision. Exp Eye Res 110:88–95

    Article  CAS  PubMed  Google Scholar 

  5. Redburn-Johnson D (1998) GABA as a developmental neurotransmitter in the outer plexiform layer of the vertebrate retina. Perspect Dev Neurobiol 5:261–267

    CAS  PubMed  Google Scholar 

  6. Calaza KC, Gardino PF, de Mello FG (2006) Transporter mediated GABA release in the retina: role of excitatory amino acids and dopamine. Neurochem Int 49:769–777

    Article  CAS  PubMed  Google Scholar 

  7. Yang XL (2004) Characterization of receptors for glutamate and GABA in retinal neurons. Prog Neurobiol 73:127–150

    Article  CAS  PubMed  Google Scholar 

  8. Cheng ZY, Chebib M, Schmid KL (2011) rho1 GABAC receptors are expressed in fibrous and cartilaginous layers of chick sclera and located on sclera fibroblasts and chondrocytes. J Neurochem 118:281–287

    Article  CAS  PubMed  Google Scholar 

  9. Cheng ZY, Chebib M, Schmid KL (2012) Identification of GABA receptors in chick cornea. Mol Vis 18:1107–1114

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Cheng ZY, Wang XP, Schmid KL, Liu L (2013) Identification of GABA receptors in chick retinal pigment epithelium. Neurosci Lett 539:43–47

    Article  CAS  PubMed  Google Scholar 

  11. Seigel GM, Sun W, Salvi R et al (2003) Human corneal stem cells display functional neuronal properties. Mol Vis 9:159–163

    CAS  PubMed  Google Scholar 

  12. Booij JC, ten Brink JB, Swagemakers SM et al (2010) A new strategy to identify and annotate human RPE-specific gene expression. PLoS ONE 5:e9341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Guo C, Hirano AA, Stella SL Jr et al (2010) Guinea pig horizontal cells express GABA, the GABA-synthesizing enzyme GAD 65, and the GABA vesicular transporter. J Comp Neurol 518:1647–1669

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Oh SJ, Kim IB, Lee EJ et al (1999) Immunocytological localization of dopamine in the guinea pig retina. Cell Tissue Res 298:561–565

    Article  CAS  PubMed  Google Scholar 

  15. Osborne NN, Patel S, Beaton DW, Neuhoff V (1986) GABA neurones in retinas of different species and their postnatal development in situ and in culture in the rabbit retina. Cell Tissue Res 243:117–123

    Article  CAS  PubMed  Google Scholar 

  16. Biedermann B, Bringmann A, Reichenbach A (2002) High-affinity GABA uptake in retinal glial (Muller) cells of the guinea pig: electrophysiological characterization, immunohistochemical localization, and modeling of efficiency. Glia 39:217–228

    Article  PubMed  Google Scholar 

  17. Biedermann B, Eberhardt W, Reichelt W (1994) GABA uptake into isolated retinal Muller glial cells of the guinea-pig detected electrophysiologically. Neuroreport 5:438–440

    Article  CAS  PubMed  Google Scholar 

  18. Howlett MH, McFadden SA (2006) Form-deprivation myopia in the guinea pig (Cavia porcellus). Vision Res 46:267–283

    Article  PubMed  Google Scholar 

  19. Chen BY, Wang CY, Chen WY, Ma JX (2013) Altered TGF-beta2 and bFGF expression in scleral desmocytes from an experimentally-induced myopia guinea pig model. Graefes Arch Clin Exp Ophthalmol 251:1133–1144

    Article  CAS  PubMed  Google Scholar 

  20. McFadden SA, Gambrill R, Leotta AJ, Bowrey HE, Zeng G (2011) Inhibition of GABAc slows ocular growth and myopia in the mammalian eye. Invest Ophthalmol Vis Sci 52: E-Abstract 6306.

  21. Edwards MH (1996) Animal models of myopia. A review. Acta Ophthalmol Scand 74:213–219

    Article  CAS  PubMed  Google Scholar 

  22. Pardue MT, Stone RA, Iuvone PM (2013) Investigating mechanisms of myopia in mice. Exp Eye Res 114:96–105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Gao Q, Liu Q, Ma P et al (2006) Effects of direct intravitreal dopamine injections on the development of lid-suture induced myopia in rabbits. Graefes Arch Clin Exp Ophthalmol 244:1329–1335

    Article  CAS  PubMed  Google Scholar 

  24. Smith EL 3rd, Hung LF, Arumugam B (2014) Visual regulation of refractive development: insights from animal studies. Eye (Lond) 28:180–188

    Article  Google Scholar 

  25. McBrien NA, Moghaddam HO, Reeder AP (1993) Atropine reduces experimental myopia and eye enlargement via a nonaccommodative mechanism. Invest Ophthalmol Vis Sci 34:205–215

    CAS  PubMed  Google Scholar 

  26. Stone RA, Pardue MT, Iuvone PM, Khurana TS (2013) Pharmacology of myopia and potential role for intrinsic retinal circadian rhythms. Exp Eye Res 114:35–47

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Barathi VA, Beuerman RW (2011) Molecular mechanisms of muscarinic receptors in mouse scleral fibroblasts: prior to and after induction of experimental myopia with atropine treatment. Mol Vis 17:680–692

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Tigges M, Iuvone PM, Fernandes A et al (1999) Effects of muscarinic cholinergic receptor antagonists on postnatal eye growth of rhesus monkeys. Optom Vis Sci 76:397–407

    Article  CAS  PubMed  Google Scholar 

  29. Chua WH, Balakrishnan V, Chan YH et al (2006) Atropine for the treatment of childhood myopia. Ophthalmology 113:2285–2291

    Article  PubMed  Google Scholar 

  30. Leech EM, Cottriall CL, McBrien NA (1995) Pirenzepine prevents form deprivation myopia in a dose dependent manner. Ophthalmic Physiol Opt 15:351–356

    Article  CAS  PubMed  Google Scholar 

  31. Le QH, Cheng NN, Wu W, Chu RY (2005) Effect of pirenzepine ophthalmic solution on form-deprivation myopia in the guinea pigs. Chin Med J (Engl) 118:561–566

    CAS  Google Scholar 

  32. Siatkowski RM, Cotter SA, Crockett RS et al (2008) Two-year multicenter, randomized, double-masked, placebo-controlled, parallel safety and efficacy study of 2 % pirenzepine ophthalmic gel in children with myopia. J AAPOS 12:332–339

    Article  PubMed  Google Scholar 

  33. McBrien NA, Arumugam B, Gentle A et al (2011) The M4 muscarinic antagonist MT-3 inhibits myopia in chick: evidence for site of action. Ophthalmic Physiol Opt 31:529–539

    Article  PubMed  Google Scholar 

  34. Arumugam B, McBrien NA (2012) Muscarinic antagonist control of myopia: evidence for M4 and M1 receptor-based pathways in the inhibition of experimentally-induced axial myopia in the tree shrew. Invest Ophthalmol Vis Sci 53:5827–5837

    Article  CAS  PubMed  Google Scholar 

  35. Feldkaemper M, Schaeffel F (2013) An updated view on the role of dopamine in myopia. Exp Eye Res 114:106–119

    Article  CAS  PubMed  Google Scholar 

  36. Li XX, Schaeffel F, Kohler K, Zrenner E (1992) Dose-dependent effects of 6-hydroxy dopamine on deprivation myopia, electroretinograms, and dopaminergic amacrine cells in chickens. Vis Neurosci 9:483–492

    Article  CAS  PubMed  Google Scholar 

  37. Rohrer B, Spira AW, Stell WK (1993) Apomorphine blocks form-deprivation myopia in chickens by a dopamine D2-receptor mechanism acting in retina or pigmented epithelium. Vis Neurosci 10:447–453

    Article  CAS  PubMed  Google Scholar 

  38. Schmid KL, Wildsoet CF (2004) Inhibitory effects of apomorphine and atropine and their combination on myopia in chicks. Optom Vis Sci 81:137–147

    Article  PubMed  Google Scholar 

  39. Dong F, Zhi Z, Pan M et al (2011) Inhibition of experimental myopia by a dopamine agonist: different effectiveness between form deprivation and hyperopic defocus in guinea pigs. Mol Vis 17:2824–2834

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Iuvone PM, Tigges M, Stone RA et al (1991) Effects of apomorphine, a dopamine receptor agonist, on ocular refraction and axial elongation in a primate model of myopia. Invest Ophthalmol Vis Sci 32:1674–1677

    CAS  PubMed  Google Scholar 

  41. Mao J, Liu S, Qin W et al (2010) Levodopa inhibits the development of form-deprivation myopia in guinea pigs. Optom Vis Sci 87:53–60

    Article  PubMed  Google Scholar 

  42. Chebib M, Hinton T, Schmid KL et al (2009) Novel, potent, and selective GABAC antagonists inhibit myopia development and facilitate learning and memory. J Pharmacol Exp Ther 328:448–457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Albrecht BE, Darlison MG (1995) Localization of the rho 1- and rho 2-subunit messenger RNAs in chick retina by in situ hybridization predicts the existence of gamma-aminobutyric acid type C receptor subtypes. Neurosci Lett 189:155–158

    Article  CAS  PubMed  Google Scholar 

  44. Zhou X, Ye J, Willcox MD et al (2010) Changes in protein profiles of guinea pig sclera during development of form deprivation myopia and recovery. Mol Vis 16:2163–2174

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Howlett MH, McFadden SA (2009) Spectacle lens compensation in the pigmented guinea pig. Vision Res 49:219–227

    Article  PubMed  Google Scholar 

  46. Wang S, Liu S, Mao J, Wen D (2014) Effect of retinoic acid on the tight junctions of the retinal pigment epithelium-choroid complex of guinea pigs with lens-induced myopia in vivo. Int J Mol Med 33:825–832

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Natural Science Foundation of China (No. 81271038), and a grant from the Department of Science and Technology of Shandong Province of China (No. ZR2012HM022) to ZYC.

Conflicts of interest

The authors have no conflict of interests to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Ying Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, ZY., Wang, XP., Schmid, K.L. et al. Inhibition of form-deprivation myopia by a GABAAOr receptor antagonist, (1,2,5,6-tetrahydropyridin-4-yl) methylphosphinic acid (TPMPA), in guinea pigs. Graefes Arch Clin Exp Ophthalmol 252, 1939–1946 (2014). https://doi.org/10.1007/s00417-014-2765-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-014-2765-5

Keywords

Navigation