Skip to main content

Advertisement

Log in

Comparison of deep anterior lamellar keratoplasty and penetrating keratoplasty with respect to postoperative corneal sensitivity and tear film function

  • Cornea
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate tear film function, central and peripheral corneal sensitivity and corneal subbasal nerve morphology in the cornea after deep anterior lamellar keratoplasty (DALK) compared with penetrating keratoplasty (PK).

Methods

This prospective study compared the changes in 16 eyes of 16 patients who underwent DALK (DALK group) with those in 28 eyes of 28 patients who underwent PK (PK group). Thirty healthy volunteers were also included as controls. Tear functions were evaluated using tear break-up time (TBUT), tear meniscus height (TMH) and corneal fluorescein staining. Corneal sensation was measured with a Cochet-Bonnet esthesiometer. Corneal subbasal nerve morphology was evaluated using in vivo confocal microscopy (IVCM). The patients were examined 1, 3, 6, 9 and 12 months after keratoplasty.

Results

Postoperatively, TMH recovered significantly faster in the DALK group than in the PK group (p < 0.05), and the postoperative TBUT was much higher in the DALK group compared with the PK group (p < 0.05). Central and peripheral corneal sensitivity remained lower in both the PK and DALK groups at 12 months after surgery compared with the control group (p < 0.05). The peripheral corneal sensitivity of the host cornea was significantly higher than the central corneal sensitivity (p < 0.05). No significant difference was found in corneal sensitivity between the PK and DALK groups. There was no significant correlation between corneal sensitivity and tear film function after PK or DALK.

Conclusions

Tear film function was restored more rapidly after DALK compared with PK, but there was no significant difference in corneal sensitivity between PK and DALK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. The epidemiology of dry eye disease: report of the Epidemiology Subcommittee of the International Dry Eye WorkShop (2007). Ocul Surf 5: 93–107

  2. McCarty CA, Bansal AK, Livingston PM, Stanislavsky YL, Taylor HR (1998) The epidemiology of dry eye in Melbourne, Australia. Ophthalmology 105:1114–1119

    Article  CAS  PubMed  Google Scholar 

  3. Lin PY, Tsai SY, Cheng CY, Liu JH, Chou P, Hsu WM (2003) Prevalence of dry eye among an elderly Chinese population in Taiwan: the Shihpai Eye Study. Ophthalmology 110:1096–1101

    Article  PubMed  Google Scholar 

  4. Hirayama Y, Satake Y, Hirayama M, Shimazaki-Den S, Konomi K, Shimazaki J (2013) Changes in corneal sensation, epithelial damage, and tear function after descemet stripping automated endothelial keratoplasty. Cornea 32:1255–1259

    Article  PubMed  Google Scholar 

  5. Management and therapy of dry eye disease: report of the Management and Therapy Subcommittee of the International Dry Eye WorkShop (2007). Ocul Surf 5:163–178

  6. Muller LJ, Marfurt CF, Kruse F, Tervo TM (2003) Corneal nerves: structure, contents and function. Exp Eye Res 76:521–542

    Article  CAS  PubMed  Google Scholar 

  7. Fu Y, Liu J, Tseng SC (2012) Ocular surface deficits contributing to persistent epithelial defect after penetrating keratoplasty. Cornea 31:723–729

    Article  PubMed  Google Scholar 

  8. Darwish T, Brahma A, Efron N, O’Donnell C (2007) Subbasal nerve regeneration after penetrating keratoplasty. Cornea 26:935–940

    Article  PubMed  Google Scholar 

  9. Hara S, Kojima T, Dogru M, Uchino Y, Goto E, Matsumoto Y, Kawakita T, Tsubota K, Shimazaki J (2013) The impact of tear functions on visual outcome following keratoplasty in eyes with keratoconus. Graefes Arch Clin Exp Ophthalmol 251:1763–1770

    Article  PubMed  Google Scholar 

  10. Oh BL, Kim MK, Wee WR (2013) Comparison of clinical outcomes of same-size grafting between deep anterior lamellar keratoplasty and penetrating keratoplasty for keratoconus. Korean J Ophthalmol 27:322–330

    Article  PubMed Central  PubMed  Google Scholar 

  11. Ceccuzzi R, Zanardi A, Fiorentino A, Tinelli C, Bianchi PE (2010) Corneal sensitivity in keratoconus after penetrating and deep anterior lamellar keratoplasty. Ophthalmologica 224:247–250

    Article  CAS  PubMed  Google Scholar 

  12. Al-Aqaba MA, Otri AM, Fares U, Miri A, Dua HS (2012) Organization of the regenerated nerves in human corneal grafts. Am J Ophthalmol 153:29–37

    Article  PubMed  Google Scholar 

  13. Anwar M, Teichmann KD (2002) Big-bubble technique to bare Descemet’s membrane in anterior lamellar keratoplasty. J Cataract Refract Surg 28:398–403

    Article  PubMed  Google Scholar 

  14. De Paiva CS, Pflugfelder SC (2004) Corneal epitheliopathy of dry eye induces hyperesthesia to mechanical air jet stimulation. Am J Ophthalmol 137:109–115

    Article  PubMed  Google Scholar 

  15. Sakata LM, Wong TT, Wong HT, Kumar RS, Htoon HM, Aung HT, He M, Aung T (2010) Comparison of Visante and slit-lamp anterior segment optical coherence tomography in imaging the anterior chamber angle. Eye (Lond) 24:578–587

    Article  CAS  Google Scholar 

  16. Leung CK, Cheung CY, Li H, Dorairaj S, Yiu CK, Wong AL, Liebmann J, Ritch R, Weinreb R, Lam DS (2007) Dynamic analysis of dark–light changes of the anterior chamber angle with anterior segment OCT. Invest Ophthalmol Vis Sci 48:4116–4122

    Article  PubMed  Google Scholar 

  17. Koh S, Maeda N, Nakagawa T, Nishida K (2012) Quality of vision in eyes after selective lamellar keratoplasty. Cornea 31(Suppl 1):S45–S49

    Article  PubMed  Google Scholar 

  18. Kosker M, Duman F, Suri K, Hammersmith KM, Nagra PK, Rapuano CJ (2013) Long-term results of keratoplasty in patients with herpes zoster ophthalmicus. Cornea 32:982–986

    Article  PubMed  Google Scholar 

  19. Stern ME, Gao J, Siemasko KF, Beuerman RW, Pflugfelder SC (2004) The role of the lacrimal functional unit in the pathophysiology of dry eye. Exp Eye Res 78:409–416

    Article  CAS  PubMed  Google Scholar 

  20. Situ P, Simpson TL (2010) Interaction of corneal nociceptive stimulation and lacrimal secretion. Invest Ophthalmol Vis Sci 51:5640–5645

    Article  PubMed  Google Scholar 

  21. Sitompul R, Sancoyo GS, Hutauruk JA, Gondhowiardjo TD (2008) Sensitivity change in cornea and tear layer due to incision difference on cataract surgery with either manual small-incision cataract surgery or phacoemulsification. Cornea 27(Suppl 1):S13–S18

    Article  PubMed  Google Scholar 

  22. Herrmann WA, Shah CP, von Mohrenfels CW, Gabler B, Hufendiek K, Lohmann CP (2005) Tear film function and corneal sensation in the early postoperative period after LASEK for the correction of myopia. Graefes Arch Clin Exp Ophthalmol 243:911–916

    Article  PubMed  Google Scholar 

  23. Belmonte C, Acosta MC, Gallar J (2004) Neural basis of sensation in intact and injured corneas. Exp Eye Res 78:513–525

    Article  CAS  PubMed  Google Scholar 

  24. Qiu X, Gong L, Lu Y, Jin H, Robitaille M (2012) The diagnostic significance of Fourier-domain optical coherence tomography in Sjogren syndrome, aqueous tear deficiency and lipid tear deficiency patients. Acta Ophthalmol 90:e359–e366

    Article  PubMed  Google Scholar 

  25. Methodologies to diagnose and monitor dry eye disease: report of the Diagnostic Methodology Subcommittee of the International Dry Eye WorkShop (2007). Ocul Surf 5: 108–152

  26. Zhou S, Li Y, Lu AT, Liu P, Tang M, Yiu SC, Huang D (2009) Reproducibility of tear meniscus measurement by Fourier-domain optical coherence tomography: a pilot study. Ophthalmic Surg Lasers Imaging 40:442–447

    Article  PubMed Central  PubMed  Google Scholar 

  27. Ibrahim OM, Dogru M, Takano Y, Satake Y, Wakamatsu TH, Fukagawa K, Tsubota K, Fujishima H (2010) Application of visante optical coherence tomography tear meniscus height measurement in the diagnosis of dry eye disease. Ophthalmology 117:1923–1929

    Article  PubMed  Google Scholar 

  28. Ohguchi T, Kojima T, Ibrahim OM, Nagata T, Shimizu T, Shirasawa T, Kawakita T, Satake Y, Tsubota K, Shimazaki J, Ishida S (2013) The effects of 2 % rebamipide ophthalmic solution on the tear functions and ocular surface of the superoxide dismutase-1 (sod1) knockout mice. Invest Ophthalmol Vis Sci 54:7793–7802

    Article  CAS  PubMed  Google Scholar 

  29. Szczesna DH, Kulas Z, Kasprzak HT, Stenevi U (2009) Examination of tear film smoothness on corneae after refractive surgeries using a noninvasive interferometric method. J Biomed Opt 14:64029

    Article  Google Scholar 

  30. Tung CI, Perin AF, Gumus K, Pflugfelder SC (2014) Tear meniscus dimensions in tear dysfunction and their correlation with clinical parameters. Am J Ophthalmol 157:301–310

    Article  PubMed  Google Scholar 

  31. Huang T, Lee EJ, Planck SR, Rosenbaum JT (2012) The effects of corneal endothelium on graft survival in a murine model of lamellar keratoplasty. Ophthalmic Res 47:128–134

    Article  PubMed  Google Scholar 

  32. Treseler PA, Foulks GN, Sanfilippo F (1986) The relative immunogenicity of corneal epithelium, stroma, and endothelium. The role of major histocompatibility complex antigens. Transplantation 41:229–234

    Article  CAS  PubMed  Google Scholar 

  33. Steven P, Hos D, Heindl LM, Bock F, Cursiefen C (2013) Immune reactions after DMEK, DSAEK and DALK. Klin Monbl Augenheilkd 230:494–499

    Article  CAS  PubMed  Google Scholar 

  34. Jeong S, Ledee DR, Gordon GM, Itakura T, Patel N, Martin A, Fini ME (2012) Interaction of clusterin and matrix metalloproteinase-9 and its implication for epithelial homeostasis and inflammation. Am J Pathol 180:2028–2039

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Mathers WD, Jester JV, Lemp MA (1988) Return of human corneal sensitivity after penetrating keratoplasty. Arch Ophthalmol 106:210–211

    Article  CAS  PubMed  Google Scholar 

  36. Stamer L, Bohnke M, Draeger J (1987) Development of corneal sensitivity following keratoplasty. Fortschr Ophthalmol 84:432–435

    CAS  PubMed  Google Scholar 

  37. Rao GN, John T, Ishida N, Aquavella JV (1985) Recovery of corneal sensitivity in grafts following penetrating keratoplasty. Ophthalmology 92:1408–1411

    Article  CAS  PubMed  Google Scholar 

  38. Golebiowski B, Papas E, Stapleton F (2011) Assessing the sensory function of the ocular surface: implications of use of a non-contact air jet aesthesiometer versus the Cochet-Bonnet aesthesiometer. Exp Eye Res 92:408–413

    Article  CAS  PubMed  Google Scholar 

  39. Richter A, Slowik C, Somodi S, Vick HP, Guthoff R (1996) Corneal reinnervation following penetrating keratoplasty–correlation of esthesiometry and confocal microscopy. Ger J Ophthalmol 5:513–517

    CAS  PubMed  Google Scholar 

  40. Niederer RL, Perumal D, Sherwin T, McGhee CN (2007) Corneal innervation and cellular changes after corneal transplantation: an in vivo confocal microscopy study. Invest Ophthalmol Vis Sci 48:621–626

    Article  PubMed  Google Scholar 

  41. Szaflik JP (2007) Comparison of in vivo confocal microscopy of human cornea by white light scanning slit and laser scanning systems. Cornea 26:438–445

    Article  PubMed  Google Scholar 

  42. Patel SV, Erie JC, McLaren JW, Bourne WM (2007) Keratocyte density and recovery of subbasal nerves after penetrating keratoplasty and in late endothelial failure. Arch Ophthalmol 125:1693–1698

    Article  PubMed  Google Scholar 

  43. Patel DV, McGhee CN (2006) Mapping the corneal sub-basal nerve plexus in keratoconus by in vivo laser scanning confocal microscopy. Invest Ophthalmol Vis Sci 47:1348–1351

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (30801263; 81270972) and the Fund for Young Prominent Scholars of Sun Yat-sen University (11ykpy66).

Ethical standards

The study was approved by the Investigational Review Board of Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China. The research was consistent with the tenets of the Declaration of Helsinki. All persons enrolled gave their informed consent prior to their inclusion in the study.

Conflicts of interest

This study was supported by the National Natural Science Foundation of China (30801263; 81270972) and the Fund for Young Prominent Scholars of Sun Yat-sen University (11ykpy66). Xiaolei Lin, Binbin Xu, Yifang Sun, Jing Zhong, Weilan Huang, and Jin Yuan declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Yuan.

Additional information

Xiaolei Lin and Binbin Xu are contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Xu, B., Sun, Y. et al. Comparison of deep anterior lamellar keratoplasty and penetrating keratoplasty with respect to postoperative corneal sensitivity and tear film function. Graefes Arch Clin Exp Ophthalmol 252, 1779–1787 (2014). https://doi.org/10.1007/s00417-014-2748-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-014-2748-6

Keywords

Navigation