Skip to main content

Advertisement

Log in

Cone implicit time as a predictor of visual outcome in macular hole surgery

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate whether preoperative retinal function measured by full-field ERG and multifocal ERG is correlated to postoperative visual acuity after macular hole surgery.

Methods

Standard pars plana vitrectomy with removal of the internal limiting membrane (ILM) was performed on 19 consecutive patients undergoing macular hole surgery. Intraocular gas tamponade with a C2F6 gas–air mixture was employed, followed by a face-down position for at least 5 days. The patients were examined with the ETDRS chart, full-field ERG (Espion), multifocal ERG (Veris 6), and optical coherence tomography (OCT) preoperatively, and 6 weeks, 6 months, and 18 months after surgery.

Results

The cone 30-Hz flicker implicit time in the full-field ERG reflecting retinal function was prolonged (p = 0.016) before surgery compared to aged-matched controls. After macula hole surgery, longstanding alteration of cone function reflected by mfERG and full-field ERG was verified 18 months after surgery. The prolonged cone 30-Hz flicker implicit time in the full-field ERG before surgery was significantly correlated to the ETDRS visual acuity 6 months postoperatively (p = 0.03).

Conclusions

Preoperative evaluation of retinal function with multifocal ERG and full-field ERG improves the understanding of the retinal recovery process after macular hole surgery. The cone implicit time in full-field 30-Hz flicker ERG could be a valid predictor of long-term visual outcome, which may be useful for selecting patients suitable for surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kelly NE, Wendel RT (1991) Vitreous surgery for idiopathic macular holes. Results of a pilot study. Arch Ophthalmol 109(5):654–659

    Article  CAS  PubMed  Google Scholar 

  2. Dimopoulos IS, Tennant M, Johnson A, Fisher S, Freund PR, Sauvé Y (2013) Subjects with unilateral neovascular AMD have bilateral delays in rod-mediated phototransduction activation kinetics and in dark adaptation recovery. Invest Ophthalmol Vis Sci 54(8):5186–5195

    Article  PubMed  Google Scholar 

  3. Moschos M, Apostolopoulos M, Ladas J, Theodossiadis P, Malias J, Moschou M, Papaspirou A, Theodossiadis G (2001) Multifocal ERG changes before and after macular hole surgery. Doc Ophthalmol 102(1):31–40

    Article  CAS  PubMed  Google Scholar 

  4. Scupola A, Mastrocola A, Sasso P, Fasciani R, Montrone L, Falsini B, Abed E (2013) Assessment of retinal function before and after idiopathic macular hole surgery. Am J Ophthalmol 156(1):132–139

    Article  PubMed  Google Scholar 

  5. Yip YW, Fok AC, Ngai JW, Lai RY, Lam DS, Lai TY (2010) Changes in first- and second-order multifocal electroretinography in idiopathic macular hole and their correlations with macular hole diameter and visual acuity. Graefes Arch Clin Exp Ophthalmol 248(4):477–484

    Article  PubMed  Google Scholar 

  6. Birch DG, Jost BF, Fish GE (1988) The focal electroretinogram in fellow eyes of patients with idiopathic macular holes. Arch Ophthalmol 106(11):1558–1563

    Article  CAS  PubMed  Google Scholar 

  7. Tosi GM, Martone G, Balestrazzi A, Malandrini A, Alegente M, Pichierri P (2009) Visual field loss progression after macular hole surgery. J Ophthalmol 2009:617891

    Article  PubMed Central  PubMed  Google Scholar 

  8. Ezra E, Arden GB, Riordan-Eva P, Aylward GW, Gregor ZJ (1996) Visual field loss following vitrectomy for stage 2 and 3 macular holes. Br J Ophthalmol 80(6):519–525

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Ueno S, Kondo M, Piao CH, Ikenoya K, Miyake Y, Terasaki H (2006) Selective amplitude reduction of the PhNR after macular hole surgery: ganglion cell damage related to ICG-assisted ILM peeling and gas tamponade. Invest Ophthalmol Vis Sci 47(8):3545–3549

    Article  PubMed  Google Scholar 

  10. Shah SP, Manjunath V, Rogers AH, Baumal CR, Reichel E, Duker JS (2013) Optical coherence tomography-guided facedown positioning for macular hole surgery. Retina 33(2):356–362

    Article  PubMed Central  PubMed  Google Scholar 

  11. Haritoglou C, Reiniger IW, Schaumberger M, Gass CA, Priglinger SG, Kampik A (2006) Five-year follow-up of macular hole surgery with peeling of the internal limiting membrane: update of a prospective study. Retina 26(6):618–622

    Article  PubMed  Google Scholar 

  12. Rao X, Wang NK, Chen YP, Hwang YS, Chuang LH, Liu IC, Chen KJ, Wu WC, Lai CC (2013) Outcomes of outpatient fluid-gas exchange for open macular hole after vitrectomy. Am J Ophthalmol 156(2):326–333

    Article  PubMed  Google Scholar 

  13. Tavolato M, Lo Giudice G, Cian R, Galan A (2013) Outcomes of 195 consecutive patients undergoing 2-port pars plana vitrectomy with slit-lamp illumination system for posterior segment disease: a retrospective study. Retina 33(4):785–790

    Article  PubMed  Google Scholar 

  14. Marmor MF, Fulton AB, Holder GE, Miyake Y, Brigell M, Bach M (2009) Standard for clinical electroretinography. Doc Ophthalmol 118:69–77

    Article  CAS  PubMed  Google Scholar 

  15. Gerth C (2009) The role of the ERG in the diagnosis and treatment of age-related macular degeneration. Doc Ophthalmol 118(1):63–68

    Article  PubMed  Google Scholar 

  16. Si YJ, Kishi S, Aoyagi K (1999) Assessment of macular function by multifocal electroretinogram before and after macular hole surgery. Br J Ophthalmol 83(4):420–424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Terasaki H, Miyake Y, Nomura R, Piao CH, Hori K, Niwa T, Kondo M (2001) Focal macular ERGs in eyes after removal of macular ILM during macular hole surgery. Invest Ophthalmol Vis Sci 42(1):229–234

    CAS  PubMed  Google Scholar 

  18. Szlyk JP, Vajaranant TS, Rana R, Lai WW, Pulido JS, Paliga J, Blair NP, Seiple W (2005) Assessing responses of the macula in patients with macular holes using a new system measuring localized visual acuity and the mfERG. Doc Ophthalmol 110(2–3):181–191

  19. Purtskhvanidze K, Treumer F, Junge O, Hedderich J, Roider J, Hillenkamp J (2013) The long-term course of functional and anatomical recovery after macular hole surgery. Invest Ophthalmol Vis Sci 54:4882–4891

    Article  PubMed  Google Scholar 

  20. Wallentén KG, Andréasson S, Ghosh F (2008) Retinal function after vitrectomy. Retina 28(4):558–563

    Article  PubMed  Google Scholar 

  21. Schatz P, Andréasson S (2010) Recovery of retinal function after recent-onset rhegmatogenous retinal detachment in relation to type of surgery. Retina 30(1):152–159

    Article  PubMed  Google Scholar 

  22. Schatz A, Breithaupt M, Hudemann J, Niess A, Messias A, Zrenner E, Bartz-Schmidt KU, Gekeler F, Willmann G (2013) Electroretinographic assessment of retinal function during acute exposure to normobaric hypoxia. Graefes Arch Clin Exp Ophthalmol 252(1):43–50

    Article  PubMed  Google Scholar 

  23. Tuzson R, Varsanyi B, Vince Nagy B, Lesch B, Vámos R, Németh J, Farkas A, Ferencz M (2010) Role of multifocal electroretinography in the diagnosis of idiopathic macular hole. Invest Ophthalmol Vis Sci 51(3):1666–1670

    Article  PubMed  Google Scholar 

  24. Alkabes M, Padilla L, Salinas C, Nucci P, Vitale L, Pichi F, Burès-Jelstrup A, Mateo C (2013) Assessment of OCT measurements as prognostic factors in myopic macular hole surgery without foveoschisis. Graefes Arch Clin Exp Ophthalmol 251(11):2521–2527

    Article  PubMed  Google Scholar 

  25. Itoh Y, Inoue M, Rii T, Hiraoka T, Hirakata A (2012) Correlation between length of foveal cone outer segment tips line defect and visual acuity after macular hole closure. Ophthalmology 119(7):1438–1446

    Article  PubMed  Google Scholar 

  26. Larsson J, Andreasson S, Bauer B (1998) Cone b-wave implicit time as an early predictor of rubeosis in central retinal vein occlusion. Am J Ophthalmol 125(2):247–249

    Article  CAS  PubMed  Google Scholar 

  27. Tyrberg M, Lindblad U, Melander A, Lövestam-Adrian M, Ponjavic V, Andréasson S (2011) Electrophysiological studies in newly onset type 2 diabetes without visible vascular retinopathy.Doc. Ophthalmol 123(3):193–198

    CAS  Google Scholar 

  28. Tzekov R, Arden GB (1999) The electroretinogram in diabetic retinopathy. Surv Ophthalmol 44(1):53–60

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Boel Nilsson and Ing-Marie Holst for their skilful technical assistance in the full-field ERG and mfERG measurements. This study was supported by grants from the Swedish Medical Research Council, The Swedish Association of the Visually Impaired, and Skane County Council Research. This study was partially presented at the Gonin Meeting in Reykjavik in 2012.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sten Andréasson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andréasson, S., Ghosh, F. Cone implicit time as a predictor of visual outcome in macular hole surgery. Graefes Arch Clin Exp Ophthalmol 252, 1903–1909 (2014). https://doi.org/10.1007/s00417-014-2628-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-014-2628-0

Keywords

Navigation