Skip to main content

Advertisement

Log in

The association between dark adaptation and macular pigment optical density in healthy subjects

  • Medical Ophthalmology
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate whether macular pigment optical density (MPOD) is related to dark adaptation in healthy subjects.

Methods

Dark adaptation was measured after a minimum 30 % pigment bleach in 33 subjects (aged 15–68), using a white 1° stimulus presented 11° below fixation on a cathode ray tube monitor. The luminance range of the monitor was extended using neutral density filters. A heterochromatic flicker photometry based instrument (MPS 9000) was used to measure MPOD.

Results

The average MPOD for the whole group was 0.37 ±0.21 optical density units. Subjects with lighter irides had on average 40 % lower MPOD compared to those with darker irides (0.3 ± 0.20 vs 0.5 ± 0.19). Group mean MPOD was weakly associated with second (r = 0.32, p = 0.07) and third rod-mediated recovery rates (r = 0.31, p = 0.08) and with the rod threshold (r = −0.24, p = 0.18) 30 min after the onset of bleach. MPOD was unrelated to cone time constant (r = −0.02, p = 0.91), cone threshold (r = −0.01, p = 0.96), rod–cone break (r = 0.13, p = 0.45) or the rod–rod break (r = 0.11, p = 0.52). The second rod-mediated recovery rate (S2) for the lower 10th percentile of MPOD (n = 4) was 0.18 log cd.m-2.min-1 and 0.24 log cd.m-2.min-1 for the upper 10th percentile (n = 4). The two groups were significantly different (t = −2.67, p = 0.037).

Conclusions

We report a statistically significant difference between subjects falling in the 10th percentile extremes of MPOD and rod-mediated but not cone-mediated sensitivity recovery. Further investigation into the relationship between MPOD and rod function is warranted, particularly extending the work to encompass those with low MPOD and poor night vision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Stringham JM, Hammond BR (2008) Macular pigment and visual performance under glare conditions. Optom Vis Sci 85(2):82

    Article  PubMed  Google Scholar 

  2. Stringham JM, Hammond BR (2007) The glare hypothesis of macular pigment function. Optom Vis Sci 84(9):859

    Article  PubMed  Google Scholar 

  3. Loughman J, Akkali MC, Beatty S (2010) The relationship between macular pigment and visual performance. Vis Res 50:1249–1256

    Article  PubMed  Google Scholar 

  4. Loughman J, Davison P, Beatty S (2007) Impact of macular pigment on visual performance. Optician C7230:23–28

    Google Scholar 

  5. Seddon JM, Ajani UA, Sperduto RD (1994) Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration. Eye Disease Case-Control Study Group. JAMA 272(18):1413–1420

    Article  PubMed  CAS  Google Scholar 

  6. Snodderly DM (1995) Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins. Am J Clin Nutr 62(6 Suppl):1448S–1461S

    PubMed  CAS  Google Scholar 

  7. Beatty S, Boulton M, Henson D, Koh HH, Murray IJ (1999) Macular pigment and age related macular degeneration. Br J Ophthalmol 83(7):867

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Davies NP, Morland AB (2004) Macular pigments: their characteristics and putative role. Prog Retin Eye Res 23(5):533–559

    Article  PubMed  CAS  Google Scholar 

  9. Richer S (1999) ARMD-pilot (case series) environmental intervention data. J Am Optom Assoc 70(1):24–36

    PubMed  CAS  Google Scholar 

  10. Richer S, Stiles W, Statkute L (2002) The lutein antioxidant supplementation trial. Invest Ophthalmol Vis Sci 43(12):2542

    Google Scholar 

  11. Richer S, Stiles W, Statkute L (2004) Double-masked, placebo-controlled, randomized trial of lutein and antioxidant supplementation in the intervention of atrophic age-related macular degeneration: the Veterans LAST study (Lutein Antioxidant Supplementation Trial). Optometry 75(4):216–229

    Article  PubMed  Google Scholar 

  12. Berendschot T, Makridaki M, van der Veen R, Parry N, Carden D, Murray I (2011) The Clear (combination (of) lutein effects (on) aging retina) study; Lutein supplementation improves visual acuity and night vision in early AMD; A two-centre, placebo-controlled study. ARVO Meeting Abstracts 52(6):3631

    Google Scholar 

  13. Murray IJ, Makridaki M, van der Veen RLP, Carden D, Parry NRA, Berendschot TTJM (2013) Lutein supplementation over a one-year period in early AMD might have a mild beneficial effect on visual acuity: the CLEAR study. Invest Ophthalmol Vis Sci 54(3):1781–1788

    Article  PubMed  CAS  Google Scholar 

  14. Kvansakul J, Rodriguez-Carmona M, Edgar D (2006) Supplementation with the carotenoids lutein or zeaxanthin improves human visual performance. Ophthalmic Physiol Opt 26(4):362–371

    Article  PubMed  Google Scholar 

  15. Rodriguez-Carmona M, Kvansakul J, Harlow JA, Kopcke W, Schalch W, Barbur JL (2006) The effects of supplementation with lutein and/or zeaxanthin on human macular pigment density and colour vision. Ophthalmic Physiol Opt 26:137–147

    Article  PubMed  Google Scholar 

  16. Bartlett H, Eperjesi F (2008) A randomised controlled trial investigating the effect of lutein and antioxidant dietary supplementation on visual function in healthy eyes. Clin Nutr 27(2):218–227

    Article  PubMed  CAS  Google Scholar 

  17. Rapp LM, Maple SS, Choi JH (2000) Lutein and zeaxanthin concentrations in rod outer segment membranes from perifoveal and peripheral human retina. Invest Ophthalmol Vis Sci 41(5):1200

    PubMed  CAS  Google Scholar 

  18. Sommerburg OG, Siems WG, Hurst JS, Lewis JW, Kliger DS, van Kuijk F (1999) Lutein and zeaxanthin are associated with photoreceptors in the human retina. Curr Eye Res 19:491–495

    Article  PubMed  CAS  Google Scholar 

  19. Hammond BR, Wooten BR, Snodderly DM (1998) Preservation of visual sensitivity of older subjects: association with macular pigment density. Invest Ophthalmol Vis Sci 39(2):397–406

    PubMed  Google Scholar 

  20. Van der Veen RL, Berendschot TTJ, Hendrikse F, Carden D, Makridaki M, Murray IJ (2009) A new desktop instrument for measuring macular pigment optical density based on a novel technique for setting flicker thresholds. Ophthalmic Physiol Opt 29(2):127–137

    Article  PubMed  Google Scholar 

  21. Curcio CA, Sloan KR, Kalina RE, Hendrickson AE (1990) Human photoreceptor topography. J Comp Neurol 292(4):497–523

    Article  PubMed  CAS  Google Scholar 

  22. Coile DC, Baker HD (1992) Foveal dark adaptation, photopigment regeneration, and aging. Vis Neurosci 8(1):27–39

    Article  PubMed  CAS  Google Scholar 

  23. Jackson GR, Owsley C, McGwinJr G (1999) Aging and dark adaptation. Vis Res 39(23):3975–3982

    Article  PubMed  CAS  Google Scholar 

  24. Patryas L, Parry NR, Carden D (2013) Assessment of age changes and repeatability for computer-based rod dark adaptation. Graefes Arch Clin Exp Ophthalmol 251(7):1821–1827

    Article  PubMed Central  PubMed  Google Scholar 

  25. Brown B, Adams AJ, Coletta NJ, Haegerstrom-Portnoy G (1986) Dark adaptation in age-related maculopathy. Ophthalmic Physiol Opt 6(1):81–84

    Article  PubMed  CAS  Google Scholar 

  26. Steinmetz R, Haimovici R, Jubb C (1993) Symptomatic abnormalities of dark adaptation in patients with age-related Bruch’s membrane change. Br J Ophthalmol 77(9):549–554

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Owsley C, Jackson GR, White M, Feist R, Edwards D (2001) Delays in rod-mediated dark adaptation in early age-related maculopathy* 1. Ophthalmology 108(7):1196–1202

    Article  PubMed  CAS  Google Scholar 

  28. Jackson GR, Owsley C, Curcio CA (2002) Photoreceptor degeneration and dysfunction in aging and age-related maculopathy. Ageing Res Rev 1(3):381–396

    Article  PubMed  Google Scholar 

  29. Dimitrov PN, Guymer RH, Zele AJ, Anderson AJ, Vingrys AJ (2008) Measuring rod and cone dynamics in age-related maculopathy. Invest Ophthalmol Vis Sci 49(1):55

    Article  PubMed  Google Scholar 

  30. Lamb TD (1981) The involvement of rod photoreceptors in dark adaptation. Vis Res 21(12):1773–1782

    Article  PubMed  CAS  Google Scholar 

  31. Curcio CA, Medeiros NE, Millican CL (1996) Photoreceptor loss in age-related macular degeneration. Invest Ophthalmol Vis Sci 37(7):1236–1249

    PubMed  CAS  Google Scholar 

  32. Haegerstrom-Portnoy G, Schneck ME, Brabyn JA (1999) Seeing into old age: vision function beyond acuity. Optom Vis Sci 76(3):141–158

    Article  PubMed  CAS  Google Scholar 

  33. Rushton WAH, Powell DS (1972) The rhodopsin content and the visual threshold of human rods. Vis Res 12(6):1073–1081

    Article  PubMed  CAS  Google Scholar 

  34. Makridaki M, Carden D, Murray IJ (2009) Macular pigment measurement in clinics: controlling the effect of the ageing media. Ophthalmic Physiol Opt 29(3):338–344

    Article  PubMed  CAS  Google Scholar 

  35. Ciulla TA, Curran-Celantano J, Cooper DA (2001) Macular pigment optical density in a midwestern sample. Ophthalmology 108(4):730–737

    Article  PubMed  CAS  Google Scholar 

  36. Ciulla T, Hammond B (2004) Macular pigment density and aging, assessed in the normal elderly and those with cataracts and age-related macular degeneration. Am J Ophthalmol 138(4):582–587

    Article  PubMed  Google Scholar 

  37. Nolan J, O’Donovan O, Kavanagh H (2004) Macular pigment and percentage of body fat. Invest Ophthalmol Vis Sci 45(11):3940

    Article  PubMed  Google Scholar 

  38. Hammond BRJ, FULD K, Snodderly MD (1996) Iris color and macular pigment optical density. Exp Eye Res 62(3):293–298

    Article  PubMed  CAS  Google Scholar 

  39. Wooten BR, Hammond BR Jr, Land RI, Snodderly DM (1999) A practical method for measuring macular pigment optical density. Invest Ophthalmol Vis Sci 40(11):2481

    PubMed  CAS  Google Scholar 

  40. Hammond BR, Caruso-Avery M (2000) Macular pigment optical density in a Southwestern sample. Invest Ophthalmol Vis Sci 41(6):1492

    PubMed  Google Scholar 

  41. Ciulla TA, Hammond BR, Yung CW, Pratt LM (2001) Macular pigment optical density before and after cataract extraction. Invest Ophthalmol Vis Sci 42(6):1338

    PubMed  CAS  Google Scholar 

  42. Mellerio J, Ahmadi-Lari S, Van Kuijk F, Pauleikhoff D, Bird AC, Marshall J (2002) A portable instrument for measuring macular pigment with central fixation. Curr Eye Res 25(1):37–47

    Article  PubMed  CAS  Google Scholar 

  43. Lamb TD, Pugh EN (2006) Phototransduction, dark adaptation, and rhodopsin regeneration. The Proctor Lecture. Invest Ophthalmol Vis Sci 47(12):5138

    Article  Google Scholar 

  44. Sturr JF, Zhang L, Taub HA, Hannon DJ, Jackowski MM (1997) Psychophysical evidence for losses in rod sensitivity in the aging visual system. Vis Res 37(4):475–481

    Article  PubMed  CAS  Google Scholar 

  45. Mortimer RG, Fell JC (1989) Older drivers: their night fatal crash involvement and risk. Accid Anal Prev 21(3):273–282

    Article  PubMed  CAS  Google Scholar 

  46. McMurdo ME, Gaskell A (1991) Dark adaptation and falls in the elderly. Gerontology 37(4):221–224

    Article  PubMed  CAS  Google Scholar 

  47. Lamb TD, Pugh EN (2004) Dark adaptation and the retinoid cycle of vision. Prog Retin Eye Res 23(3):307–380

    Article  PubMed  CAS  Google Scholar 

  48. Owsley C, McGwin G, Jackson GR (2006) Effect of short-rerm, high-dose retinol on dark adaptation in aging and early age-related maculopathy. Invest Ophthalmol Vis Sci 47(4):1310–1318

    Article  PubMed  Google Scholar 

  49. Jacobson SG, Cideciyan AV, Regunath G (1995) Night blindness in Sorsby’s fundus dystrophy reversed by vitamin A. Nat Genet 11(1):27–32

    Article  PubMed  CAS  Google Scholar 

  50. Berendschot TT, Makridaki M, van der Veen RL, Parry NR, Carden D, Murray IJ (2011) The Clear (combination (of) lutein effects (on) aging retina) study; lutein supplementation improves visual acuity and night vision in early AMD; a two-centre, placebo-controlled study. Invest Ophthalmol Vis Sci 52(6):3631

    Google Scholar 

  51. Schalch W (2001) Importance of the carotenoids lutein and zeaxanthin for the human eye. Chimica Oggi 19:12–15

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr Daniel H. Baker for his help with Matlab coding. This research was supported by a BBSRC grant (BB/F017227/1) and Vitabiotics. Neil R.A. Parry and Tariq Aslam’s participation was facilitated by the Manchester Biomedical Research Centre and the Greater Manchester Comprehensive Local Research Network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Patryas.

Additional information

Neil R.A. Parry has a proprietorial interest in the dark adaptation software described here. Ian J. Murray and Dave Carden are the joint inventors and patent holders of the MPS 9000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patryas, L., Parry, N.R.A., Carden, D. et al. The association between dark adaptation and macular pigment optical density in healthy subjects. Graefes Arch Clin Exp Ophthalmol 252, 657–663 (2014). https://doi.org/10.1007/s00417-014-2564-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-014-2564-z

Keywords

Navigation