Skip to main content

Advertisement

Log in

Changes in fundus autofluorescence in polypoidal choroidal vasculopathy during 3 years of follow-up

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate changes in fundus autofluorescence (FAF) during 3 years of follow-up in patients with polypoidal choroidal vasculopathy (PCV).

Design

Retrospective study.

Methods

We retrospectively reviewed the charts of 48 eyes of 47 patients (35 men, 12 women; mean age, 69.9 ± 7.1 years) with treatment-naïve PCV for whom FAF and indocyanine green angiography (ICGA) images were available at baseline and at 3 years ± 3 months follow-up examination. The main outcome measures were the FAF changes during 3 years of follow-up, and the correlation between them and polypoidal lesions and branching vascular networks on ICGA.

Results

The FAF of the polypoidal lesions showed three patterns at baseline and changes during 3 years of follow-up: confluent hypoautofluorescence surrounded by a hyperautofluorescent ring (86.1 % → 51.4 %), confluent hypoautofluorescence without a ring (8.3 % → 43.0 %), and no marked changes (5.6 % → 5.6 %). The FAF in 96.2 % of resolved polypoidal lesions persisted on images with abnormal FAF during the 3 years of follow-up. The granular hypoautofluorescence at the branching vascular networks at baseline became partially confluent hypoautofluorescence in 41 eyes (85.4 %). The mean area with confluent hypoautofluorescence that corresponded to the branching vascular network lesions increased significantly (P < 0.001) from 1.75 mm2 to 5.10 mm2 after 3 years of follow-up.

Conclusion

The FAF changes in PCV during the 3 years of follow-up can indicate that FAF imaging is a useful and clinically beneficial tool for noninvasively evaluating the PCV lesions and disorders of the upper retinal pigment epithelium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yannuzzi LA, Sorenson J, Spaide RF, Lipson B (1990) Idiopathic polypoidal choroidal vasculopathy (IPCV). Retina 10(1):1–8

    Article  PubMed  CAS  Google Scholar 

  2. Spaide RF, Yannuzzi LA, Slakter JS, Sorenson J, Orlach DA (1995) Indocyanine green videoangiography of idiopathic polypoidal choroidal vasculopathy. Retina 15(2):100–110

    Article  PubMed  CAS  Google Scholar 

  3. Yannuzzi LA, Ciardella A, Spaide RF, Rabb M, Freund KB, Orlock DA (1997) The expanding clinical spectrum of idiopathic polypoidal choroidal vasculopathy. Arch Ophthalmol 115(4):478–485

    Article  PubMed  CAS  Google Scholar 

  4. Yannuzzi LA, Nogueira FB, Spaide RF, Guyer DR, Orlock DA, Colombero D, Freund KB (1998) Idiopathic polypoidal choroidal vasculopathy: a peripheral lesion. Arch Ophthalmol 116(3):382–383

    PubMed  CAS  Google Scholar 

  5. Wakabayashi T, Gomi F, Sawa M, Tsujikawa M, Nishida K (2012) Intravitreal bevacizumab for exudative branching vascular networks in polypoidal choroidal vasculopathy. Br J Ophthalmol 96(3):394–399

    Article  PubMed  Google Scholar 

  6. Hikichi T, Higuchi M, Matsushita T, Kosaka S, Matsushita R, Takami K, Ohtsuka H, Ariga H (2012) One-year results of three monthly ranibizumab injections and as-needed reinjections for polypoidal choroidal vasculopathy in Japanese patients. Am J Ophthalmol 154(1):117–124 e1

    Article  PubMed  CAS  Google Scholar 

  7. Ojima Y, Hangai M, Sakamoto A, Tsujikawa A, Otani A, Tamura H, Yoshimura N (2009) Improved visualization of polypoidal choroidal vasculopathy lesions using spectral-domain optical coherence tomography. Retina 29(1):52–59

    Article  PubMed  Google Scholar 

  8. Sato T, Kishi S, Watanabe G, Matsumoto H, Mukai R (2007) Tomographic features of branching vascular networks in polypoidal choroidal vasculopathy. Retina 27(5):589–594

    Article  PubMed  Google Scholar 

  9. von Ruckmann A, Fitzke FW, Bird AC (1997) Fundus autofluorescence in age-related macular disease imaged with a laser scanning ophthalmoscope. Invest Ophthalmol Vis Sci 38(2):478–486

    Google Scholar 

  10. von Ruckmann A, Fitzke FW, Bird AC (1997) In vivo fundus autofluorescence in macular dystrophies. Arch Ophthalmol 115(5):609–615

    Article  Google Scholar 

  11. Delori FC, Dorey CK, Staurenghi G, Arend O, Goger DG, Weiter JJ (1995) In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. Invest Ophthalmol Vis Sci 36(3):718–729

    PubMed  CAS  Google Scholar 

  12. Holz FG, Bellman C, Staudt S, Schutt F, Volcker HE (2001) Fundus autofluorescence and development of geographic atrophy in age-related macular degeneration. Invest Ophthalmol Vis Sci 42(5):1051–1056

    PubMed  CAS  Google Scholar 

  13. Yamagishi T, Koizumi H, Yamazaki T, Kinoshita S (2012) Fundus autofluorescence in polypoidal choroidal vasculopathy. Ophthalmology 119(8):1650–1657

    Article  PubMed  Google Scholar 

  14. Sayegh RG, Simader C, Scheschy U, Montuoro A, Kiss C, Sacu S, Kreil DP, Prünte C, Schmidt-Erfurth U (2011) A systematic comparison of spectral-domain optical coherence tomography and fundus autofluorescence in patients with geographic atrophy. Ophthalmology 118(9):1844–1851

    Article  PubMed  Google Scholar 

  15. Otsuji T, Takahashi K, Fukushima I, Uyama M (2000) Optical coherence tomographic findings of idiopathic polypoidal choroidal vasculopathy. Ophthalmic Surg Lasers 31(3):210–214

    PubMed  CAS  Google Scholar 

  16. Iijima H, Iida T, Imai M, Gohdo T, Tsukahara S (2000) Optical coherence tomography of orange-red subretinal lesions in eyes with idiopathic polypoidal choroidal vasculopathy. Am J Ophthalmol 129(1):21–26

    Article  PubMed  CAS  Google Scholar 

  17. Ueno C, Gomi F, Sawa M, Nishida K (2012) Correlation of indocyanine green angiography and optical coherence tomography findings after intravitreal ranibizumab for polypoidal choroidal vasculopathy. Retina 94(3):297–301

    Google Scholar 

  18. Akaza E, Yuzawa M, Mori R (2011) Three-year follow-up results of photodynamic therapy for polypoidal choroidal vasculopathy. Jpn J Ophthalmol 55(1):39–44

    Article  PubMed  CAS  Google Scholar 

  19. Kokame GT, Yeung L, Lai JC (2010) Continuous anti-VEGF treatment with ranibizumab for polypoidal choroidal vasculopathy: 6-month results. Br J Ophthalmol 94(3):297–301

    Article  PubMed  Google Scholar 

  20. Saito M, Iida T, Kano M (2011) Intravitreal ranibizumab for polypoidal choroidal vasculopathy with recurrent or residual exudation. Retina 31(8):1589–1597

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

All authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest, and none were reported. Involved in design (M.S., F.G.), conduct (M.S., F.G.), data collection (M.S., F.G., C.U., M.S.), analysis and interpretation of the data (M.S., F.G.), and preparation and review of the manuscript (M.S., F.G., K.N.). The institutional review board of Osaka University Hospital, Osaka, Japan, approved this retrospective study. The data collection complied with Japanese law. The study was conducted in accordance with the provisions of the Declaration of Helsinki.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumi Gomi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, M., Gomi, F., Sawa, M. et al. Changes in fundus autofluorescence in polypoidal choroidal vasculopathy during 3 years of follow-up. Graefes Arch Clin Exp Ophthalmol 251, 2331–2337 (2013). https://doi.org/10.1007/s00417-013-2336-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-013-2336-1

Keywords

Navigation