Skip to main content

Advertisement

Log in

Five-year forecasts of the Visual Field Index (VFI) with binocular and monocular visual fields

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

In clinical care, visual field (VF) damage is assessed using monocular VF testing, yet patients perceive the world binocularly. This study was conducted to compare 5-year forecasts for the Visual Field Index (VFI) generated from series of binocular and monocular VFs.

Methods

Series of ten consecutive VFs (Humphrey 24–2 Full-threshold) spanning on average 3.7 (SD: ±0.8) years from 60 eyes of 30 glaucomatous patients were retrospectively examined. The VFs of both eyes were merged to produce the integrated VF and its VFI score (Binocular VFI) was estimated. Forecasts of binocular and monocular VFIs were calculated for each patient by projecting the fitted linear regression 5 years ahead from the last VF following the method on the Humphrey Guided Progression Analysis (GPA) print-out. The precisions of the forecasts were calculated as the width of the 95 % prediction limit (PL).

Results

The mean 5 year forecast for binocular VFIs was 92 % (SD: 11 %), which was significantly higher than forecasts from right and left eyes (79 % [SD: 19 %] and 82 % [SD: 16 %] respectively; P < 0.05). The width of the 95 % PL for 5-year predictions with monocular VFIs (mean right eye: 29 % [SD: 19 %] and mean left eye: 27 % [SD: 16 %]) were significantly larger than that of the binocular VFI (mean: 12 % [SD: 7 %]; P < 0.05).

Conclusions

Five year forecasted VFI values using binocular measures return significantly better values, and can be made with greater confidence than those based on monocular measures. In turn, forecasts of a patient’s binocular VFI might be more relevant to estimating the patient’s future functional VF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gutierrez P, Wilson MR, Johnson C, Gordon M, Cioffi GA, Ritch R, Sherwood M, Meng K, Mangione CM (1997) Influence of glaucomatous visual field loss on health-related quality of life. Arch Ophthalmol 115:777–784

    Article  PubMed  CAS  Google Scholar 

  2. Janz NK, Wren PA, Lichter PR, Musch DC, Gillespie BW, Guire KE (2001) Quality of life in newly diagnosed glaucoma patients: the Collaborative Initial Glaucoma Treatment Study. Ophthalmology 108:887–897, discussion 898

    Article  PubMed  CAS  Google Scholar 

  3. Parrish RK 2nd, Gedde SJ, Scott IU, Feuer WJ, Schiffman JC, Mangione CM, Montenegro-Piniella A (1997) Visual function and quality of life among patients with glaucoma. Arch Ophthalmol 115:1447–1455

    Article  PubMed  Google Scholar 

  4. Ringsdorf L, McGwin G Jr, Owsley C (2006) Visual field defects and vision-specific health-related quality of life in African-Americans and whites with glaucoma. J Glaucoma 15:414–418

    Article  PubMed  Google Scholar 

  5. Spaeth G, Walt J, Keener J (2006) Evaluation of quality of life for patients with glaucoma. Am J Ophthalmol 141:S3–S14

    Article  PubMed  Google Scholar 

  6. Varma R, Wu J, Chong K, Azen SP, Hays RD (2006) Impact of severity and bilaterality of visual impairment on health-related quality of life. Ophthalmology 113:1846–1853

    Article  PubMed  Google Scholar 

  7. Wang JJ, Mitchell P, Smith W (2000) Vision and low self-rated health: the Blue Mountains Eye Study. Invest Ophthalmol Vis Sci 41:49–54

    PubMed  CAS  Google Scholar 

  8. Wilson MR, Coleman AL, Yu F, Bing EG, Sasaki IF, Berlin K, Winters J, Lai A (1998) Functional status and well-being in patients with glaucoma as measured by the medical outcomes study short form-36 questionnaire. Ophthalmology 105:2112–2116

    Article  PubMed  CAS  Google Scholar 

  9. Glen FC, Crabb DP, Garway-Heath DF (2011) The direction of research into visual disability and quality of life in glaucoma. BMC Ophthalmol 11:19

    Article  PubMed  Google Scholar 

  10. Ramulu P (2009) Glaucoma and disability: which tasks are affected, and at what stage of disease? Curr Opin Ophthalmol 20:92–98

    Article  PubMed  Google Scholar 

  11. Jampel HD, Friedman DS, Quigley H, Miller R (2002) Correlation of the binocular visual field with patient assessment of vision. Invest Ophthalmol Vis Sci 43:1059–1067

    PubMed  Google Scholar 

  12. Jampel HD, Schwartz A, Pollack I, Abrams D, Weiss H, Miller R (2002) Glaucoma patients’ assessment of their visual function and quality of life. J Glaucoma 11:154–163

    Article  PubMed  Google Scholar 

  13. Nelson P, Aspinall P, Papasouliotis O, Worton B, O’Brien C (2003) Quality of life in glaucoma and its relationship with visual function. J Glaucoma 12:139–150

    Article  PubMed  Google Scholar 

  14. Noe G, Ferraro J, Lamoureux E, Rait J, Keeffe JE (2003) Associations between glaucomatous visual field loss and participation in activities of daily living. Clin Exp Ophthalmol 31:482–486

    Article  Google Scholar 

  15. Scott IU, Feuer WJ, Jacko JA (2002) Impact of graphical user interface screen features on computer task accuracy and speed in a cohort of patients with age-related macular degeneration. Am J Ophthalmol 134:857–862

    Article  PubMed  Google Scholar 

  16. Turano KA, Rubin GS, Quigley HA (1999) Mobility performance in glaucoma. Invest Ophthalmol Vis Sci 40:2803–2809

    PubMed  CAS  Google Scholar 

  17. Viswanathan AC, McNaught AI, Poinoosawmy D, Fontana L, Crabb DP, Fitzke FW, Hitchings RA (1999) Severity and stability of glaucoma: patient perception compared with objective measurement. Arch Ophthalmol 117:450–454

    Article  PubMed  CAS  Google Scholar 

  18. Esterman B (1982) Functional scoring of the binocular field. Ophthalmology 89:1226–1234

    PubMed  CAS  Google Scholar 

  19. Crabb DP, Fitzke FW, Hitchings RA, Viswanathan AC (2004) A practical approach to measuring the visual field component of fitness to drive. Br J Ophthalmol 88:1191–1196

    Article  PubMed  CAS  Google Scholar 

  20. Crabb DP, Viswanathan AC (2005) Integrated visual fields: a new approach to measuring the binocular field of view and visual disability. Graefes Arch Clin Exp Ophthalmol 243:210–216

    Article  PubMed  Google Scholar 

  21. Crabb DP, Viswanathan AC, McNaught AI, Poinoosawmy D, Fitzke FW, Hitchings RA (1998) Simulating binocular visual field status in glaucoma. Br J Ophthalmol 82:1236–1241

    Article  PubMed  CAS  Google Scholar 

  22. Owen VM, Crabb DP, White ET, Viswanathan AC, Garway-Heath DF, Hitchings RA (2008) Glaucoma and fitness to drive: using binocular visual fields to predict a milestone to blindness. Invest Ophthalmol Vis Sci 49:2449–2455

    Article  PubMed  Google Scholar 

  23. Bengtsson B, Heijl A (2008) A visual field index for calculation of glaucoma rate of progression. Am J Ophthalmol 145:343–353

    Article  PubMed  Google Scholar 

  24. Asaoka R, Crabb DP, Yamashita T, Russell RA, Wang YX, Garway-Heath DF (2011) Patients have two eyes!: binocular versus better eye visual field indices. Invest Ophthalmol Vis Sci 52:7007–7011

    Article  PubMed  Google Scholar 

  25. Bengtsson B, Heijl A (2000) False-negative responses in glaucoma perimetry: indicators of patient performance or test reliability? Invest Ophthalmol Vis Sci 41:2201–2204

    PubMed  CAS  Google Scholar 

  26. Caprioli J, Park HJ, Ugurlu S, Hoffman D (1998) Slope of the peripapillary nerve fiber layer surface in glaucoma. Invest Ophthalmol Vis Sci 39:2321–2328

    PubMed  CAS  Google Scholar 

  27. Levi DM, Klein SA, Aitsebaomo AP (1985) Vernier acuity, crowding and cortical magnification. Vis Res 25:963–977

    Article  PubMed  CAS  Google Scholar 

  28. Artes PH, O’Leary N, Hutchison DM, Heckler L, Sharpe GP, Nicolela MT, Chauhan BC (2011) Properties of the statpac visual field index. Invest Ophthalmol Vis Sci 52:4030–4038

    Article  PubMed  Google Scholar 

  29. Bengtsson B, Patella VM, Heijl A (2009) Prediction of glaucomatous visual field loss by extrapolation of linear trends. Arch Ophthalmol 127:1610–1615

    Article  PubMed  Google Scholar 

  30. Giraud JM, Fenolland JR, May F, Hammam O, Sadat AM, Boumezrag AB, Renard JP (2010) Analysis of a new visual field index, the VFI, in ocular hypertension and glaucoma. J Fr Ophtalmol 33:2–9

    Article  PubMed  CAS  Google Scholar 

  31. Rao HL, Kumar AU, Babu JG, Senthil S, Garudadri CS (2011) Relationship between severity of visual field loss at presentation and rate of visual field progression in glaucoma. Ophthalmology 118:249–253

    Article  PubMed  Google Scholar 

  32. Kwon YH, Kim CS, Zimmerman MB, Alward WL, Hayreh SS (2001) Rate of visual field loss and long-term visual outcome in primary open-angle glaucoma. Am J Ophthalmol 132:47–56

    Article  PubMed  CAS  Google Scholar 

  33. Rasker MT, van den Enden A, Bakker D, Hoyng PF (2000) Rate of visual field loss in progressive glaucoma. Arch Ophthalmol 118:481–488

    Article  PubMed  CAS  Google Scholar 

  34. Stewart WC, Kolker AE, Sharpe ED, Day DG, Holmes KT, Leech JN, Johnson M, Cantrell JB (2000) Factors associated with long-term progression or stability in primary open-angle glaucoma. Am J Ophthalmol 130:274–279

    Article  PubMed  CAS  Google Scholar 

  35. Drance S, Anderson DR, Schulzer M (2001) Risk factors for progression of visual field abnormalities in normal-tension glaucoma. Am J Ophthalmol 131:699–708

    Article  PubMed  CAS  Google Scholar 

  36. Fogagnolo P, Sangermani C, Oddone F, Frezzotti P, Iester M, Figus M, Ferreras A, Romano S, Gandolfi S, Centofanti M, Rossetti L, Orzalesi N (2011) Long-term perimetric fluctuation in patients with different stages of glaucoma. Br J Ophthalmol 95:189–193

    Article  PubMed  Google Scholar 

  37. Tattersall CL, Vernon SA, Menon GJ (2007) Mean deviation fluctuation in eyes with stable Humphrey 24–2 visual fields. Eye (Lond) 21:362–366

    Article  CAS  Google Scholar 

  38. Artes PH, Iwase A, Ohno Y, Kitazawa Y, Chauhan BC (2002) Properties of perimetric threshold estimates from full threshold, SITA standard, and SITA fast strategies. Invest Ophthalmol Vis Sci 43:2654–2659

    PubMed  Google Scholar 

  39. Wall M, Woodward KR, Doyle CK, Artes PH (2009) Repeatability of automated perimetry: a comparison between standard automated perimetry with stimulus size III and V, matrix, and motion perimetry. Invest Ophthalmol Vis Sci 50:974–979

    Article  PubMed  Google Scholar 

  40. Heijl A, Lindgren A, Lindgren G (1989) Test-retest variability in glaucomatous visual fields. Am J Ophthalmol 108:130–135

    PubMed  CAS  Google Scholar 

  41. Blumenthal EZ, Sample PA, Zangwill L, Lee AC, Kono Y, Weinreb RN (2000) Comparison of long-term variability for standard and short-wavelength automated perimetry in stable glaucoma patients. Am J Ophthalmol 129:309–313

    Article  PubMed  CAS  Google Scholar 

  42. Kwon YH, Park HJ, Jap A, Ugurlu S, Caprioli J (1998) Test-retest variability of blue-on-yellow perimetry is greater than white-on-white perimetry in normal subjects. Am J Ophthalmol 126:29–36

    Article  PubMed  CAS  Google Scholar 

  43. Piltz JR, Starita RJ (1990) Test-retest variability in glaucomatous visual fields. Am J Ophthalmol 109:109–111

    PubMed  CAS  Google Scholar 

  44. Chauhan BC, Garway-Heath DF, Goni FJ, Rossetti L, Bengtsson B, Viswanathan AC, Heijl A (2008) Practical recommendations for measuring rates of visual field change in glaucoma. Br J Ophthalmol 92:569–573

    Article  PubMed  CAS  Google Scholar 

  45. Crabb DP, Garway-Heath DF (2012) Intervals between visual field tests when monitoring the glaucomatous patient: wait-and-See approach. Invest Ophthalmol Vis Sci 53:2770–2776

    Article  PubMed  Google Scholar 

  46. Jansonius NM (2010) On the accuracy of measuring rates of visual field change in glaucoma. Br J Ophthalmol 94:1404–1405

    Article  PubMed  CAS  Google Scholar 

  47. Wesselink C, Stoutenbeek R, Jansonius NM (2011) Incorporating life expectancy in glaucoma care. Eye (Lond) 25:1575–1580

    Article  CAS  Google Scholar 

  48. Nelson-Quigg JM, Cello K, Johnson CA (2000) Predicting binocular visual field sensitivity from monocular visual field results. Invest Ophthalmol Vis Sci 41:2212–2221

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P. Crabb.

Additional information

Some of the authors (R Malik, DF Garway-Heath) receive funding from the National Institute for Health Research (UK) Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology. Professor Garway-Heath’s chair at UCL is supported by funding from the International Glaucoma Association. The views expressed in this publication are those of the authors and not necessarily those of the Department of Health.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asaoka, R., Russell, R.A., Malik, R. et al. Five-year forecasts of the Visual Field Index (VFI) with binocular and monocular visual fields. Graefes Arch Clin Exp Ophthalmol 251, 1335–1341 (2013). https://doi.org/10.1007/s00417-012-2214-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-012-2214-2

Keywords

Navigation