Skip to main content

Advertisement

Log in

Optical quality of the Visian Implantable Collamer Lens for different refractive powers

  • Refractive Surgery
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the optical quality of the Visian Implantable Collamer Lens (ICL) for different powers and pupil diameters.

Methods

Wavefront aberrations of the −3, −6, −9, −12 and −15 diopters (D) V4b ICLs were measured at 3- and 4.5-mm pupils. The root mean square (RMS) of total higher order aberrations (HOAs), trefoil, coma, tetrafoil, secondary astigmatism, and spherical aberration were evaluated. In addition, modulation transfer function (MTF) of the five ICL powers was measured for a 3-mm pupil. The point spread functions (PSFs) of each ICL evaluated was calculated from the wavefront aberrations at 4.5-mm pupil.

Results

The ICLs evaluated had negative spherical aberration and negligible amounts of other aberrations. The negative spherical aberration increases when the ICL power increases being related with its innate optical properties. At 3-mm pupil, no statistically significant differences between ICLs were found for all the Zernike coefficient RMS values analyzed (p > 0.05). At 4.5-mm pupil, significant RMS values for the spherical aberration and total HOAs were found between medium-low and high powers (p < 0.05). Similar MTFs were obtained for all ICLs, although they slightly worsened when increased the ICL power.

Conclusions

ICLs evaluated provide good optical quality in terms of wavefront aberrations, MTF, and PSF. Although spherical aberration increases with ICL power, these values are clinically negligible to affect the visual quality after its implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. The Implantable Contact Lens in Treatment of Myopia (ITM) Study Group (2003) . U.S. Food and Drug Administration clinical trial of the implantable contact lens for moderate to high myopia. Ophthalmology 110:255–266

    Article  Google Scholar 

  2. ICL in Treatment of Myopia (ITM) Study Group (2004) United States Food and Drug Administration clinical trial of the Implantable Collamer Lens (ICL) for moderate to high myopia; three-year follow up. Ophthalmology 111:1683–1692

    Article  Google Scholar 

  3. Gonvers M, Othenin-Girard P, Bornet C, Sickenberg M (2001) Implantable contact lens for moderate to high myopia: short-term follow-up of 2 models. J Cataract Refract Surg 27:380–388

    Article  PubMed  CAS  Google Scholar 

  4. Uusitalo RJ, Aine E, Sen NH, Laatikainen L (2002) Implantable contact lens for high myopia. J Cataract Refract Surg 28:29–36

    Article  PubMed  Google Scholar 

  5. Pineda-Fernández A, Jaramillo J, Vargas J, Jaramillo M, Jaramillo J, Galíndez A (2004) Phakic posterior chamber intraocular lens for high myopia. J Cataract Refract Surg 30:2277–2283

    Article  PubMed  Google Scholar 

  6. Ieong A, Rubin GS, Allan BDS (2009) Quality of life in high myopia. Implantable collamer lens implantation versus contact lens wear. Ophthalmology 116:275–280

    Article  PubMed  Google Scholar 

  7. Ieong A, Hau SCH, Rubin GS, Allan BDS (2010) Quality of life in high myopia before and after implantable collamer lens implantation. Ophthalmology 117:2295–2300

    Article  PubMed  Google Scholar 

  8. Lackner B, Pieh S, Schmidinger G, Simader C, Franz C, Dejaco-Ruhswurm I, Skorpik C (2004) Long-term results of implantation of phakic posterior chamber intraocular lenses. J Cataract Refract Surg 30:2269–2276

    Article  PubMed  Google Scholar 

  9. Kamiya K, Shimizu K, Igarashi A, Hikita F, Komatsu M (2009) Four-year follow-up of posterior chamber phakic intraocular lens implantation for moderate to high myopia. Arch Ophthalmol 127:845–850

    Article  PubMed  Google Scholar 

  10. Alfonso JF, Baamonde B, Fernández-Vega L, Fernandes P, González-Méijome JM, Montés-Micó R (2011) Posterior chamber collagen copolymer phakic intraocular lenses to correct myopia: five-year follow-up. J Cataract Refract Surg 37:873–880

    Article  PubMed  Google Scholar 

  11. Davidorf JM, Zaldivar R, Oscherow S (1998) Posterior chamber phakic intraocular lens for hyperopia of +4 to +11 diopters. J Refract Surg 14:306–311

    PubMed  CAS  Google Scholar 

  12. Pesando PM, Ghiringhello MP, Di Meglio G, Fanton G (2007) Posterior chamber phakic intraocular lens (ICL) for hyperopia: ten-year follow-up. J Cataract Refract Surg 33:1579–1584

    Article  PubMed  Google Scholar 

  13. Alfonso JF, Fernández-vega L, Fernandes P, González-Méijome JM, Montés-Micó R (2010) Collagen copolymer toric posterior chamber phakic intraocular lens for myopic astigmatism: one-year follow-up. J Cataract Refract Surg 36:568–576

    Article  PubMed  Google Scholar 

  14. Alfonso JF, Baamonde B, Madrid-Costa D, Fernandes P, Jorge J, Montés-Micó R (2010) Collagen copolymer toric posterior chamber phakic intraocular lenses to correct high myopic astigmatism. J Cataract Refract Surg 36:1349–1357

    Article  PubMed  Google Scholar 

  15. Sanders DR, Vukich JA (2003) Comparison of implantable contact lens and laser assisted in situ keratomileusis for moderate to high myopia. Cornea 22:324–331

    Article  PubMed  Google Scholar 

  16. Kamiya K, Shimizu K, Igarashi A, Komatsu M (2008) Comparison of collamer toric contact lens implantation and wavefront-guided laser in situ keratomileusis for high myopic astigmatism. J Cataract Refract Surg 34:1687–1693

    Article  PubMed  Google Scholar 

  17. Igarashi A, Kamiya K, Shimizu K, Komatsu M (2009) Visual performance after implantable collamer lens implantation and wavefront-guided laser in situ keratomileusis for high myopia. Am J Ophthalmol 148:164–170

    Article  PubMed  Google Scholar 

  18. Shin JY, Ahn H, Seo KY, Kim EK, Kim (2012) Comparison of higher-order aberrations after implantable collamer lens implantation and wavefront-guided LASEK in high myopia. J Refract Surg 28:106–111

    Article  PubMed  Google Scholar 

  19. Kamiya K, Igarashi A, Shimizu K, Matsumura K, Komatsu M (2012) Visual performance after posterior chamber phakic intraocular lens implantation and wavefront-guided laser in situ keratomileusis for low to moderate myopia. Am J Ophthalmol 153:1178–1186

    Article  PubMed  Google Scholar 

  20. Sanders D, Vukich JA (2006) Comparison of implantable collamer lens (ICL) and laser-assisted in situ keratomileusis (LASIK) for low myopia. Cornea 25:1139–1146

    Article  PubMed  Google Scholar 

  21. Sanders DR (2007) Matched population comparison of the Visian implantable collamer lens and standard LASIK for myopia of −3.00 to −7.88 diopters. J Refract Surg 23:537–553

    PubMed  Google Scholar 

  22. Gatinel D, Adam PA, Chaabouni S, Munck J, Thevenot M, Hoang-Xuan T, Pieger S, Fujieda M, Bains HS (2010) Comparison of corneal and total ocular aberrations before and after myopic LASIK. J Refract Surg 26:333–340

    Article  PubMed  Google Scholar 

  23. Sarver EJ, Sanders DR, Vukich JA (2003) Image quality in myopic eyes corrected with laser in situ keratomileusis and phakic intraocular lens. J Refract Surg 19:397–404

    PubMed  Google Scholar 

  24. Kim SW, Yang H, Yoon G, Lee YJ, Kweon MN, Kim JK, Seo KY (2011) Higher-order aberration changes after implantable collamer lens implantation for myopia. Am J Ophthalmol 151:653–662

    Article  PubMed  Google Scholar 

  25. Joannes L, Hough T, Hutsebaut X, Dubois X, Ligot R, Saoul B, Donink PV, De Coninck K (2010) The reproducibility of a new power mapping instrument based on the phase shifting schlieren method for the measurement of spherical and toric contact lenses. CLAE 33:3–8

    Google Scholar 

  26. Joannes L, Dubois F, Legros JC (2003) Phase-shifting schlieren: high-resolution quantitative schlieren that uses the phase-shifting technique principle. Appl Opt 42:5046–5053

    Article  PubMed  Google Scholar 

  27. Gatinel D, Pagnoulle C, Houbrechts Y, Gobin L (2011) Design and qualification of a diffractive trifocal optical profile for intraocular lenses. J Cataract Refract Surg 37:2060–2067

    Article  PubMed  Google Scholar 

  28. International Organization for Standardization (1999) Ophthalmic implants — intraocular lenses - part 2: optical properties and test methods. ISO, Geneva (ISO 11979–2)

    Google Scholar 

  29. International Organization for Standardization (2006) Ophthalmic implants — intraocular lenses - part 9: multifocal intraocular lenses. ISO, Geneva (ISO 11979–9)

    Google Scholar 

  30. Sekiguchi N, Williams DR, Brainard DH (1993) Efficiency in detection of isoluminant and isochromatic interference fringes. J Opt Soc Am A 10:2118–2133

    Article  CAS  Google Scholar 

  31. Rocha KM, Vabre L, Harms F, Chateau N, Krueger RR (2007) Effects of Zernike wavefront aberrations on visual acuity measured using electromagnetic adaptive optics technology. J Refract Surg 23:953–959

    PubMed  Google Scholar 

  32. Montés-Micó R, Ferrer-Blasco T, Cerviño A (2009) Analysis of the possible benefits of aspheric intraocular lenses: review of the literature. J Cataract Refract Surg 35:172–181

    Article  PubMed  Google Scholar 

  33. Fernandes P, González-Méijome JM, Madrid-Costa D, Ferrer-Blasco T, Jorge J, Montés-Micó R (2011) Implantable collamer posterior chamber intraocular lenses: a review of potential complications. J Refract Surg 27:765–776

    Article  PubMed  Google Scholar 

  34. Uozato H, Shimizu K, Kawamorita T, Ohmoto F (2011) Modulation transfer function of intraocular collamer lens with a central artificial hole. Graefes Arch Clin Exp Ophthalmol 249:1081–1085

    Article  PubMed  Google Scholar 

  35. Ohmoto F, Shimizu K, Uozato H, Kawamorita T, Uga S (2010) Optical performance of implantable collamer lenses with and without a central perforation. Kitasato Med J 40:150–153

    Google Scholar 

  36. Shiratani T, Shimizu K, Fujisawa K, Uga S, Nagano K, Murakami Y (2008) Crystalline lens changes in porcine eyes with implanted phakic IOL (ICL) with a central hole. Graefes Arch Clin Exp Ophthalmol 246:719–728

    Article  PubMed  Google Scholar 

  37. Kamiya K, Shimizu K, Igarashi A, Kobashi H, Ishii R, Sato N (2012) Clinical evaluation of optical quality and intraocular scattering after posterior chamber phakic intraocular lens implantation. Invest Ophthalmol Vis Sci 53:3161–3166

    Article  PubMed  Google Scholar 

  38. Applegate RA, Howland HC (1993) Magnification and visual acuity in refractive surgery. Arch Ophthalmol 111:1335–1342

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments and disclosure

This research was supported in part by the Research Grant awarded by the Spanish Ministry of Science and Innovation to Robert Montés-Micó (#SAF2009-13342#) and a VALi+D research scholarship to Cari Pérez-Vives (GeneralitatValenciana).

The authors have no proprietary interest in any of the materials mentioned in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cari Pérez-Vives.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Vives, C., Domínguez-Vicent, A., Ferrer-Blasco, T. et al. Optical quality of the Visian Implantable Collamer Lens for different refractive powers. Graefes Arch Clin Exp Ophthalmol 251, 1423–1429 (2013). https://doi.org/10.1007/s00417-012-2200-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-012-2200-8

Keywords

Navigation