Skip to main content

Advertisement

Log in

Lamina cribrosa thickness is not correlated with central corneal thickness or axial length in healthy eyes

Central corneal thickness, axial length, and lamina cribrosa thickness

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

The aim of this study was to determine the relationship of the central corneal thickness (CCT) and axial length (AXL) with the central lamina cribrosa thickness (LCT) in healthy human eyes.

Methods

This was a prospective observational case series. The optic discs of 189 eyes from 100 healthy subjects with a refractive error smaller than −8 diopters were scanned using enhanced-depth imaging spectral-domain optical coherence tomography (Spectralis OCT, Heidelberg Engineering, Heidelberg, Germany). The thickness of the lamina cribrosa (LC) was measured on B-scan images obtained at the center of the optic nerve head. A linear mixed-effects model was used to determine the factors associated with LCT, taking into account clustering of eyes within subjects.

Results

The thickness of the central LC was 273.19 ± 34.74 μm (mean ± SD; range, 173.73–367.94 μm). Multivariate analysis revealed a significant influence of older age on increased central LCT (p = 0.001). There was no significant association between central LCT and either CCT or AXL.

Conclusions

In this study, the central LCT increased significantly with older age in healthy human eyes. Neither CCT nor AXL was significantly associated with the central LCT in healthy human eyes with a spherical equivalent within the range from −7.0 to +3.0 diopters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gordon MO, Beiser JA, Brandt JD, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, Parrish RK 2nd, Wilson MR, Kass MA (2002) The ocular hypertension treatment study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol 120:714–720

    Article  PubMed  Google Scholar 

  2. Leske MC, Heijl A, Hussein M, Bengtsson B, Hyman L, Komaroff E (2003) Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch Ophthalmol 121:48–56

    Article  PubMed  Google Scholar 

  3. Leske MC, Heijl A, Hyman L, Bengtsson B, Dong L, Yang Z (2007) Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology 114:1965–1972

    Article  PubMed  Google Scholar 

  4. Sigal IA, Flanagan JG, Tertinegg I, Ethier CR (2009) Modeling individual-specific human optic nerve head biomechanics. Part I: IOP-induced deformations and influence of geometry. Biomech Model Mechanobiol 8:85–98

    Article  PubMed  Google Scholar 

  5. Jonas JB, Berenshtein E, Holbach L (2004) Lamina cribrosa thickness and spatial relationships between intraocular space and cerebrospinal fluid space in highly myopic eyes. Invest Ophthalmol Vis Sci 45:2660–2665

    Article  PubMed  Google Scholar 

  6. Sigal IA, Flanagan JG, Tertinegg I, Ethier CR (2007) Predicted extension, compression and shearing of optic nerve head tissues. Exp Eye Res 85:312–322

    Article  PubMed  CAS  Google Scholar 

  7. Morgan WH, Yu DY, Cooper RL, Alder VA, Cringle SJ, Constable IJ (1995) The influence of cerebrospinal fluid pressure on the lamina cribrosa tissue pressure gradient. Invest Ophthalmol Vis Sci 36:1163–1172

    PubMed  CAS  Google Scholar 

  8. Morgan WH, Chauhan BC, Yu DY, Cringle SJ, Alder VA, House PH (2002) Optic disc movement with variations in intraocular and cerebrospinal fluid pressure. Invest Ophthalmol Vis Sci 43:3236–3242

    PubMed  Google Scholar 

  9. Jonas JB, Berenshtein E, Holbach L (2003) Anatomic relationship between lamina cribrosa, intraocular space, and cerebrospinal fluid space. Invest Ophthalmol Vis Sci 44:5189–5195

    Article  PubMed  Google Scholar 

  10. Berdahl JP, Allingham RR, Johnson DH (2008) Cerebrospinal fluid pressure is decreased in primary open-angle glaucoma. Ophthalmology 115:763–768

    Article  PubMed  Google Scholar 

  11. Sigal IA, Flanagan JG, Tertinegg I, Ethier CR (2004) Finite element modeling of optic nerve head biomechanics. Invest Ophthalmol Vis Sci 45:4378–4387

    Article  PubMed  Google Scholar 

  12. Sigal IA, Ethier CR (2009) Biomechanics of the optic nerve head. Exp Eye Res 88:799–807

    Article  PubMed  CAS  Google Scholar 

  13. Levy NS, Crapps EE (1984) Displacement of optic nerve head in response to short-term intraocular pressure elevation in human eyes. Arch Ophthalmol 102:782–786

    Article  PubMed  CAS  Google Scholar 

  14. Radius RL (1987) Anatomy of the optic nerve head and glaucomatous optic neuropathy. Surv Ophthalmol 32:35–44

    Article  PubMed  CAS  Google Scholar 

  15. Albon J, Purslow PP, Karwatowski WS, Easty DL (2000) Age related compliance of the lamina cribrosa in human eyes. Br J Ophthalmol 84:318–323

    Article  PubMed  CAS  Google Scholar 

  16. Ren R, Wang N, Li B, Li L, Gao F, Xu X, Jonas JB (2009) Lamina cribrosa and peripapillary sclera histomorphometry in normal and advanced glaucomatous Chinese eyes with various axial length. Invest Ophthalmol Vis Sci 50:2175–2184

    Article  PubMed  Google Scholar 

  17. Morgan WH, Yu DY, Balaratnasingam C (2008) The role of cerebrospinal fluid pressure in glaucoma pathophysiology: the dark side of the optic disc. J Glaucoma 17:408–413

    Article  PubMed  Google Scholar 

  18. Herndon LW, Weizer JS, Stinnett SS (2004) Central corneal thickness as a risk factor for advanced glaucoma damage. Arch Ophthalmol 122:17–21

    Article  PubMed  Google Scholar 

  19. Ren R, Li B, Gao F, Li L, Xu X, Wang N, Jonas JB (2010) Central corneal thickness, lamina cribrosa and peripapillary scleral histomorphometry in non-glaucomatous Chinese eyes. Graefes Arch Clin Exp Ophthalmol 248:1579–1585

    Article  PubMed  Google Scholar 

  20. Jonas JB, Holbach L (2005) Central corneal thickness and thickness of the lamina cribrosa in human eyes. Invest Ophthalmol Vis Sci 46:1275–1279

    Article  PubMed  Google Scholar 

  21. Jonas JB, Hayreh SS, Tao Y (2009) Central corneal thickness and thickness of the lamina cribrosa and peripapillary sclera in monkeys. Arch Ophthalmol 127:1395–1396

    Article  PubMed  Google Scholar 

  22. Chihara E, Liu X, Dong J, Takashima Y, Akimoto M, Hangai M, Kuriyama S, Tanihara H, Hosoda M, Tsukahara S (1997) Severe myopia as a risk factor for progressive visual field loss in primary open-angle glaucoma. Ophthalmologica 211:66–71

    Article  PubMed  CAS  Google Scholar 

  23. Mitchell P, Hourihan F, Sandbach J, Wang JJ (1999) The relationship between glaucoma and myopia: the Blue Mountains Eye Study. Ophthalmology 106:2010–2015

    Article  PubMed  CAS  Google Scholar 

  24. Quigley HA, Addicks EM, Green WR, Maumenee AE (1981) Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol 99:635–649

    Article  PubMed  CAS  Google Scholar 

  25. Quigley HA, Addicks EM (1981) Regional differences in the structure of the lamina cribrosa and their relation to glaucomatous optic nerve damage. Arch Ophthalmol 99:137–143

    Article  PubMed  CAS  Google Scholar 

  26. Quigley HA, Hohman RM, Addicks EM, Massof RW, Green WR (1983) Morphologic changes in the lamina cribrosa correlated with neural loss in open-angle glaucoma. Am J Ophthalmol 95:673–691

    PubMed  CAS  Google Scholar 

  27. Inoue R, Hangai M, Kotera Y, Nakanishi H, Mori S, Morishita S, Yoshimura N (2009) Three-dimensional high-speed optical coherence tomography imaging of lamina cribrosa in glaucoma. Ophthalmology 116:214–222

    Article  PubMed  Google Scholar 

  28. Strouthidis NG, Grimm J, Williams GA, Cull GA, Wilson DJ, Burgoyne CF (2010) A comparison of optic nerve head morphology viewed by spectral domain optical coherence tomography and by serial histology. Invest Ophthalmol Vis Sci 51:1464–1474

    Article  PubMed  Google Scholar 

  29. Lee EJ, Kim TW, Weinreb RN, Park KH, Kim SH, Kim DM (2011) Visualization of the lamina cribrosa using enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 152(87–95):e81

    Google Scholar 

  30. (1998) Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Collaborative Normal-Tension Glaucoma Study Group. Am J Ophthalmol 126:487–497

  31. Spaide RF, Koizumi H, Pozzoni MC (2008) Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 146:496–500

    Article  PubMed  Google Scholar 

  32. Bellezza AJ, Rintalan CJ, Thompson HW, Downs JC, Hart RT, Burgoyne CF (2003) Deformation of the lamina cribrosa and anterior scleral canal wall in early experimental glaucoma. Invest Ophthalmol Vis Sci 44:623–637

    Article  PubMed  Google Scholar 

  33. Kotecha A, Izadi S, Jeffery G (2006) Age-related changes in the thickness of the human lamina cribrosa. Br J Ophthalmol 90:1531–1534

    Article  PubMed  CAS  Google Scholar 

  34. Albon J, Karwatowski WS, Easty DL, Sims TJ, Duance VC (2000) Age related changes in the non-collagenous components of the extracellular matrix of the human lamina cribrosa. Br J Ophthalmol 84:311–317

    Article  PubMed  CAS  Google Scholar 

  35. Hernandez MR, Luo XX, Andrzejewska W, Neufeld AH (1989) Age-related changes in the extracellular matrix of the human optic nerve head. Am J Ophthalmol 107:476–484

    PubMed  CAS  Google Scholar 

  36. Burgoyne CF, Downs JC (2008) Premise and prediction-how optic nerve head biomechanics underlies the susceptibility and clinical behavior of the aged optic nerve head. J Glaucoma 17:318–328

    Article  PubMed  Google Scholar 

  37. Park HY, Jeon SH, Park CK (2012) Enhanced depth imaging detects lamina cribrosa thickness differences in normal tension glaucoma and primary open-angle glaucoma. Ophthalmology 119:10–20

    Article  PubMed  Google Scholar 

  38. Kim CS, Seong GJ, Lee NH, Song KC, Namil Study Group KGS (2011) Prevalence of primary open-angle glaucoma in central South Korea the Namil study. Ophthalmology 118:1024–1030

    Article  PubMed  Google Scholar 

  39. Gonzalez-Perez J, Gonzalez-Meijome JM, Rodriguez Ares MT, Parafita MA (2011) Central corneal thickness measured with three optical devices and ultrasound pachometry. Eye Contact Lens 37:66–70

    Article  PubMed  Google Scholar 

  40. Beutelspacher SC, Serbecic N, Scheuerle AF (2011) Assessment of central corneal thickness using OCT, ultrasound, optical low coherence reflectometry and Scheimpflug pachymetry. Eur J Ophthalmol 21:132–137

    Article  PubMed  Google Scholar 

  41. Hashemi H, Roshani M, Mehravaran S, Parsafar H, Yazdani K (2007) Effect of corneal thickness on the agreement between ultrasound and Orbscan II pachymetry. J Cataract Refract Surg 33:1694–1700

    Article  PubMed  Google Scholar 

  42. Chi T, Ritch R, Stickler D, Pitman B, Tsai C, Hsieh FY (1989) Racial differences in optic nerve head parameters. Arch Ophthalmol 107:836–839

    Article  PubMed  CAS  Google Scholar 

  43. Zangwill LM, Weinreb RN, Beiser JA, Berry CC, Cioffi GA, Coleman AL, Trick G, Liebmann JM, Brandt JD, Piltz-Seymour JR, Dirkes KA, Vega S, Kass MA, Gordon MO (2005) Baseline topographic optic disc measurements are associated with the development of primary open-angle glaucoma: the Confocal Scanning Laser Ophthalmoscopy Ancillary Study to the Ocular Hypertension Treatment Study. Arch Ophthalmol 123:1188–1197

    Article  PubMed  Google Scholar 

Download references

Financial disclosure

None reported. RNW has received instruments from Heidelberg Engineering for use in research.

Funding/support

This work is supported by National Research Foundation of Korea Grant funded by the Korean Government (2010-0004210).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Woo Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, E.J., Kim, TW., Weinreb, R.N. et al. Lamina cribrosa thickness is not correlated with central corneal thickness or axial length in healthy eyes. Graefes Arch Clin Exp Ophthalmol 251, 847–854 (2013). https://doi.org/10.1007/s00417-012-2145-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-012-2145-y

Keywords

Navigation