Skip to main content

Advertisement

Log in

Adhesion/growth-regulatory galectins in the human eye: localization profiles and tissue reactivities as a standard to detect disease-associated alterations

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Objectives

To characterize the localization profiles of seven adhesion/growth-regulatory galectins in the normal human eye using immunodetection of endogenous galectins and binding of labeled galectins to sections, useful as a basis to detect disease-associated alterations.

Methods

Non-cross-reactive anti-galectin antibodies and biotinylated galectins were tested on acetone-fixed cryosections of normal human donor eyes. Controls included omission of first-step reagent, testing of an antibody against a galectin specific for rat (galectin-5), and blocking of galectin binding with lactose.

Results

Galectin presence was not restricted to one or few members of this family. Signal occurrence can even include all tested or most proteins (conjunctival or corneal epithelium), whereas choroid positivity is fully accounted for by galectin-9. Regional specificity and characteristic profiles for each protein, immuno- and galectin histochemically, were determined. Differences in tissue reactivity among the galectins were detected.

Conclusions

That the galectins have characteristic localization/reactivity profiles supports the concept of a network with potential for non-overlapping functions. The reported data thus prompt to proceed to the respective analysis of specimens from ocular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gabius HJ (ed) (2009) The Sugar Code. Fundamentals of glycosciences. Wiley-VCH, Weinheim

    Google Scholar 

  2. Graumann W, Rohen J (1958) Chemohistologische Befunde am menschlichen Auge (Cornea, Sclera, Uvea). Z mikroskop-anat Forsch 64:652–671

    CAS  Google Scholar 

  3. Versura P, Bonvicini F, Vecci M, Caramazza R, Laschi R (1984) Ultrastructural localization of ConA and WGA receptors on human corneal endothelium. Cornea 3:192–196

    Article  PubMed  Google Scholar 

  4. Holmes MJ, Mannis MJ, Lund J, Jacobs L (1985) Lectin receptors in the human cornea. Cornea 4:30–34

    Article  PubMed  CAS  Google Scholar 

  5. Panjwani N, Moulton P, Alroy J, Baum J (1986) Localization of lectin binding sites in human, cat and rabbit corneas. Invest Ophthalmol Vis Sci 27:1280–1284

    PubMed  CAS  Google Scholar 

  6. Brandon DM, Nayak SK, Binder PS (1988) Lectin binding patterns of the human cornea. Cornea 7:257–266

    Article  PubMed  CAS  Google Scholar 

  7. Kivelä T (1990) Characterization of galactose-containing glycoconjugates in the human retina: a lectin histochemical study. Curr Eye Res 9:1195–1209

    Article  PubMed  Google Scholar 

  8. Sweatt AJ, Dégi R, Davis RM (1999) Corneal wound-associated glycoconjugates analyzed by lectin histochemistry. Curr Eye Res 19:212–218

    Article  PubMed  CAS  Google Scholar 

  9. Rüdiger H, Gabius H-J (2001) Plant lectins: occurrence, biochemistry, functions and applications. Glycoconjugate J 18:589–613

    Article  Google Scholar 

  10. Qaddoumi M, Lee VHL (2004) Lectins as endocytic ligands: an assessment of lectin binding and uptake to rabbit conjunctival epithelial cells. Pharmaceut Res 21:1160–1166

    Article  CAS  Google Scholar 

  11. Balse E, Tessier L-H, Fuchs C, Forster V, Sahel JA, Picaud S (2005) Purification of mammalian cone photoreceptors by lectin panning and the enhancement of their survival in glia-conditioned medium. Invest Ophthalmol Vis Sci 46:367–374

    Article  PubMed  Google Scholar 

  12. Kent D, Sheridan CM, Tomkinson HA, White SJ, Hiscott P, Yu L, Grierson I (2003) Edible mushroom (Agaricus bisporus) lectin inhibits human retinal pigment epithelial cell proliferation in vitro. Wound Rep Reg 11:285–291

    Article  Google Scholar 

  13. Gabius H-J, André S, Jiménez-Barbero J, Romero A, Solís D (2011) From lectin structure to functional glycomics: principles of the sugar code. Trends Biochem Sci 36:298–313

    Article  PubMed  CAS  Google Scholar 

  14. Lange W, Debbage PL, Basting C, Gabius H-J (1989) Neoglycoprotein binding distinguishes distinct zones in the epithelia of the porcine eye. J Anat 166:243–252

    PubMed  CAS  Google Scholar 

  15. Villalobo A, Nogales-Gonzáles A, Gabius H-J (2006) A guide to signaling pathways connecting protein-glycan interaction with the emerging versatile effector functionality of mammalian lectins. Trends Glycosci Glycotechnol 18:1–37

    Article  CAS  Google Scholar 

  16. Schwartz-Albiez R (2009) Inflammation and glycosciences. In: Gabius H-J (ed) The Sugar Code. Fundamentals of glycosciences. Wiley-VCH, Weinheim, pp 447–467

    Google Scholar 

  17. Kaltner H, Gabius H-J (2012) A toolbox of lectins for translating the sugar code: the galectin network in phylogenesis and tumors. Histol Histopathol 27:397–416

    PubMed  CAS  Google Scholar 

  18. Uehara F, Ohba N, Ozawa M (2001) Isolation and characterization of galectins in the mammalian retina. Invest Ophthalmol Vis Sci 42:2164–2172

    PubMed  CAS  Google Scholar 

  19. Alge CS, Suppmann S, Priglinger SG, Neubauer AS, May CA, Hauck S, Welge-Lussen U, Ueffing M, Kampik A (2003) Comparative proteome analysis of native differentiated and cultured dedifferentiated human RPE cells. Invest Ophthalmol Vis Sci 44:3629–3641

    Article  PubMed  Google Scholar 

  20. Kim J, Moon C, Ahn M, Joo H-G, Jin J-K, Shin T (2009) Immunohistochemical localization of galectin-3 in the pig retina during postnatal development. Mol Vision 15:1971–1976

    CAS  Google Scholar 

  21. Fautsch MP, Silva AO, Johnson DH (2003) Carbohydrate binding proteins galectin-1 and galectin-3 in human trabecular meshwork. Exp Eye Res 77:11–16

    Article  PubMed  CAS  Google Scholar 

  22. Gupta SK, Masinick S, Garrett M, Hazlett LD (1997) Pseudomonas aeruginosa lipopolysaccharide binds galectin-3 and other human corneal epithelial proteins. Infect Immun 65:2747–2753

    PubMed  CAS  Google Scholar 

  23. Gonen T, Donaldson P, Kistler J (2000) Galectin-3 is associated with the plasma membrane of lens fiber cells. Invest Ophthalmol Vis Sci 41:199–203

    PubMed  CAS  Google Scholar 

  24. Hrdlickova-Cela E, Plzak J, Smetana KJ, Melkova Z, Kaltner H, Filipec M, Liu F-T, Gabius H-J (2001) Detection of galectin-3 in tear fluid at disease states and immunohistochemical and lectin histochemical analysis in human corneal and conjunctival epithelium. Br J Ophthalmol 85:1336–1340

    Article  PubMed  CAS  Google Scholar 

  25. Dahm R, Branmke S, Dawczynski J, Nagaraj RH, Kasper M (2003) Developmental aspects of galectin expression in the lens. Histochem Cell Biol 119:219–226

    PubMed  CAS  Google Scholar 

  26. Wang-Su S-T, McCormack AL, Yang S, Hosler MR, Mixon A, Riviere MA, Wilmarth PA, Andley UP, Garland D, Li H, David LL, Wagner BJ (2003) Proteome analysis of lens epithelia, fibers and the HLE B-3 cell line. Invest Ophthalmol Vis Sci 44:4829–4836

    Article  PubMed  Google Scholar 

  27. Magnaldo T, Fowlis D, Darmon M (1998) Galectin-7, a marker of all types of stratified epithelia. Differentiation 63:159–168

    Article  PubMed  CAS  Google Scholar 

  28. Cao Z, Wu HK, Bruce A, Wollenberg K, Panjwani M (2002) Detection of differentially expressed genes in healing mouse corneas, using cDNA microarrays. Invest Ophthalmol Vis Sci 43:2897–2904

    PubMed  Google Scholar 

  29. Ishida K, Panjwani M, Cao Z, Streilein JW (2003) Participation of pigment epithelium in ocular immune privilege. 3. Epithelia cultured from iris, ciliary body, and retina suppress T-cell activation by partially non-overlapping mechanisms. Ocul Immunol Inflamm 11:91–105

    Article  PubMed  CAS  Google Scholar 

  30. Gonen T, Grey AC, Jacobs MD, Donaldson PJ, Kistler J (2001) MP20, the second most abundant lens membrane protein and member of the tetraspanin superfamily, joins the list of ligands of galectin-3. BMC Cell Biol 2:17

    Article  PubMed  CAS  Google Scholar 

  31. Alge-Priglinger CS, André S, Kreutzer TC, Deeg CA, Kampick A, Kernt M, Schöffl H, Priglinger SG, Gabius H-J (2009) Inhibition of human retinal pigment epithelial cell attachment, spreading, and migration by the human lectin galectin-1. Mol Vision 15:2162–2173

    CAS  Google Scholar 

  32. Alge-Priglinger CS, André S, Schoeffl H, Kampik A, Strauss RW, Kernt M, Gabius H-J, Priglinger SG (2011) Negative regulation of RPE cell attachment by carbohydrate-dependent cell surface binding of galectin-3 and inhibition of the ERK-MAPK pathway. Biochimie 93:477–488

    Article  PubMed  CAS  Google Scholar 

  33. Argueso P, Guzman-Aranguez A, Mantelli F, Cao Z, Ricciuto J, Panjwani N (2009) Association of cell surface mucins with galectin-3 contributes to the ocular surface epithelial barrier. J Biol Chem 284:23037–23045

    Article  PubMed  Google Scholar 

  34. Mantelli F, Schaffer L, Dana R, Head SR, Argueso P (2009) Glycogene expression in conjunctiva of patients with dry eye: downregulation of Notch signaling. Invest Ophthalmol Vis Sci 50:2666–2672

    Article  PubMed  Google Scholar 

  35. Yuan X, Gu X, Crabb JS, Yue X, Shadrach K, Hollyfield JG, Crabb JW (2010) Quantitative proteomics: comparison of the macular Bruch membrane/choroid complex from age-related macular degeneration and normal eyes. Mol Cell Proteomics 9:1031–1046

    Article  PubMed  CAS  Google Scholar 

  36. Stitt AW, McGoldrick C, Rice-McCaldin A, McCance DR, Glenn JV, Hsu DK, Liu FT, Thorpe SR, Gardiner TA (2005) Impaired retinal angiogenesis in diabetes: role of advanced glycation end products and galectin-3. Diabetes 54:785–794

    Article  PubMed  CAS  Google Scholar 

  37. Canning P, Glenn JV, Hsu DK, Liu FT, Gardiner TA, Stitt AW (2007) Inhibition of advanced glycation and absence of galectin-3 prevent blood-retinal barrier dysfunction during short-term diabetes. Exp Diabetes Res 2007:51837

    Article  PubMed  Google Scholar 

  38. Sturm A, Lensch M, André S, Kaltner H, Wiedenmann B, Rosewicz S, Dignass AU, Gabius H-J (2004) Human galectin-2: novel inducer of T cell apoptosis with distinct profile of caspase activation. J Immunol 173:3825–3837

    PubMed  CAS  Google Scholar 

  39. Wang J, Lu ZH, Gabius H-J, Rohowsky-Kochan C, Ledeen RW, Wu G (2009) Cross-linking of GM1 ganglioside by galectin-1 mediates regulatory T cell activity involving TRPC5 channel activation: possible role in suppressing experimental autoimmune encephalomyelitis. J Immunol 182:4036–4045

    Article  PubMed  CAS  Google Scholar 

  40. Kopitz J, von Reitzenstein C, André S, Kaltner H, Uhl J, Ehemann V, Cantz M, Gabius H-J (2001) Negative regulation of neuroblastoma cell growth by carbohydrate-dependent surface binding of galectin-1 and functional divergence from galectin-3. J Biol Chem 276:35917–35923

    Article  PubMed  CAS  Google Scholar 

  41. Rappl G, Abken H, Muche JM, Sterry W, Tilgen W, André S, Kaltner H, Ugurel S, Gabius H-J, Reinhold U (2002) CD4+CD7- leukemic T cells from patients with Sézary syndrome are protected from galectin-1-triggered T cell death. Leukemia 16:840–845

    Article  PubMed  CAS  Google Scholar 

  42. Kopitz J, André S, von Reitzenstein C, Versluis K, Kaltner H, Pieters RJ, Wasano K, Kuwabara I, Liu F-T, Cantz M, Heck AJR, Gabius H-J (2003) Homodimeric galectin-7 (p53-induced gene 1) is a negative growth regulator for human neuroblastoma cells. Oncogene 22:6277–6288

    Article  PubMed  CAS  Google Scholar 

  43. André S, Sanchez-Ruderisch H, Nakagawa H, Buchholz M, Kopitz J, Forberich P, Kemmner W, Böck C, Deguchi K, Detjen KM, Wiedenmann B, von Knebel-Döberitz M, Gress TM, Nishimura S-I, Rosewicz S, Gabius H-J (2007) Tumor suppressor p16INK4a: modulator of glycomic profile and galectin-1 expression to increase susceptibility to carbohydrate-dependent induction of anoikis in pancreatic carcinoma cells. FEBS J 274:3233–3256

    Article  PubMed  Google Scholar 

  44. Sanchez-Ruderisch H, Detjen KM, Welzel M, André S, Fischer C, Gabius H-J, Rosewicz S (2011) Galectin-1 sensitizes carcinoma cells to anoikis via the fibronectin receptor α5β1-integrin. Cell Death Differ 18:806–816

    Article  PubMed  CAS  Google Scholar 

  45. Habermann FA, André S, Kaltner H, Kübler D, Sinowatz F, Gabius H-J (2011) Galectins as tools for glycan mapping in histology: comparison of their binding profiles to the bovine zona pellucida by confocal laser scanning microscopy. Histochem Cell Biol 135:539–552

    Article  PubMed  CAS  Google Scholar 

  46. Liu F-T, Patterson RJ, Wang JL (2002) Intracellular functions of galectins. Biochim Biophys Acta 1572:263–273

    Article  PubMed  CAS  Google Scholar 

  47. Smetana K Jr, Dvoránková B, Chovanec M, Boucek J, Klíma J, Motlík J, Lensch M, Kaltner H, André S, Gabius H-J (2006) Nuclear presence of adhesion/growth-regulatory galectins in normal/malignant cells of squamous epithelial origin. Histochem Cell Biol 125:171–182

    Article  PubMed  CAS  Google Scholar 

  48. Kaltner H, Seyrek K, Heck A, Sinowatz F, Gabius H-J (2002) Galectin-1 and galectin-3 in fetal development of bovine respiratory and digestive tracts. Comparison of cell type-specific expression profiles and subcellular localization. Cell Tissue Res 307:35–46

    Article  PubMed  CAS  Google Scholar 

  49. Saal I, Nagy N, Lensch M, Lohr M, Manning JC, Decaestecker C, André S, Kiss R, Salmon I, Gabius H-J (2005) Human galectin-2: expression profiling by RT-PCR/immunohistochemistry and its introduction as histochemical tool for ligand localization. Histol Histopathol 20:1191–1208

    PubMed  CAS  Google Scholar 

  50. Lensch M, Lohr M, Russwurm R, Vidal M, Kaltner H, André S, Gabius H-J (2006) Unique sequence and expression profiles of rat galectins-5 and -9 as a result of species-specific gene divergence. Int J Biochem Cell Biol 38:1741–1758

    Article  PubMed  CAS  Google Scholar 

  51. Beer A, André S, Kaltner H, Lensch M, Franz S, Sarter K, Schulze C, Gaipl US, Kern P, Herrmann M, Gabius H-J (2008) Human galectins as sensors for apoptosis/necrosis-associated surface changes of granulocytes and lymphocytes. Cytometry A 73:139–147

    PubMed  Google Scholar 

  52. Lohr M, Kaltner H, Lensch M, André S, Sinowatz F, Gabius H-J (2008) Cell-type-specific expression of murine multifunctional galectin-3 and its association with follicular atresia/luteolysis in contrast to pro-apoptotic galectins-1 and -7. Histochem Cell Biol 130:567–581

    Article  PubMed  CAS  Google Scholar 

  53. Purkrábková T, Smetana K Jr, Dvoránková B, Holíková Z, Böck C, Lensch M, André S, Pytlík R, Liu F-T, Klíma J, Smetana K, Motlik J, Gabius H-J (2003) New aspects of galectin functionality in nuclei of cultured bone marrow stromal and epidermal cells: biotinylated galectins as tool to detect specific binding sites. Biol Cell 95:535–545

    Article  PubMed  Google Scholar 

  54. André S, Pei Z, Siebert H-C, Ramström O, Gabius H-J (2006) Glycosyldisulfides from dynamic combinatorial libraries as O-glycoside mimetics for plant and mammalian lectins: their reactivities in solid-phase and cell assays and conformational analysis by molecular dynamics simulations. Bioorg Med Chem 14:6314–6323

    Article  PubMed  Google Scholar 

  55. André S, Kozár T, Schuberth R, Unverzagt C, Kojima S, Gabius H-J (2007) Substitutions in the N-glycan core as regulators of biorecognition: the case of core-fucose and bisecting GlcNAc moieties. Biochemistry 46:6984–6995

    Article  PubMed  Google Scholar 

  56. Göhler A, André S, Kaltner H, Sauer M, Gabius H-J, Doose S (2010) Hydrodynamic properties of human adhesion/growth-regulatory galectins studied by fluorescence correlation spectroscopy. Biophys J 98:3044–3053

    Article  PubMed  Google Scholar 

  57. Kayser K, Höft D, Hufnagl P, Caselitz J, Zick Y, André S, Kaltner H, Gabius H-J (2003) Combined analysis of tumor growth pattern and expression of endogenous lectins as a prognostic tool in primary testicular cancer and its lung metastases. Histol Histopathol 18:771–779

    PubMed  CAS  Google Scholar 

  58. Langbein S, Brade J, Badawi JK, Hatzinger M, Kaltner H, Lensch M, Specht K, André S, Brinck U, Alken P, Gabius H-J (2007) Gene-expression signature of adhesion/growth-regulatory tissue lectins (galectins) in transitional cell cancer and its prognostic relevance. Histopathology 51:681–690

    Article  PubMed  CAS  Google Scholar 

  59. Saussez S, de Leval L, Decaestecker C, Sirtaine N, Cludts S, Duray A, Chevalier D, André S, Gabius H-J, Remmelink M, Leroy X (2010) Galectin fingerprinting in Warthin’s tumors: lectin-based approach to trace its origin? Histol Histopathol 25:541–550

    PubMed  Google Scholar 

  60. Griegel S, Rajewsky MF, Ciesiolka T, Gabius H-J (1989) Endogenous sugar receptor (lectin) profiles of human retinoblastoma and retinoblast cell lines analyzed by cytological markers, affinity chromatography and neoglycoprotein-targeted photolysis. Anticancer Res 9:723–730

    PubMed  CAS  Google Scholar 

  61. Schwarz A, Futerman AH (1997) Determination of the localization of gangliosides using anti-ganglioside antibodies: comparison of fixation methods. J Histochem Cytochem 45:611–618

    Article  PubMed  CAS  Google Scholar 

  62. Wu G, Lu ZH, Gabius H-J, Ledeen RW, Bleich D (2011) Ganglioside GM1 deficiency in effector T cells from NOD mice induces resistance to regulatory T cell suppression. Diabetes 60:2341–2349

    Article  PubMed  CAS  Google Scholar 

  63. Streilein JW (2003) Ocular immune privilege: therapeutic opportunities from an experiment of nature. Nat Rev Immunol 3:879–889

    Article  PubMed  CAS  Google Scholar 

  64. Zhu C, Anderson AC, Schubart A, Xiong H, Imitola J, Khoury SJ, Zheng XX, Strom TB, Kuchroo VK (2005) The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol 6:1245–1252

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for generous financial support of this study by the research training grant GRK 592 (DFG), the project grant SFB 466 and research grant JA 968/2, all from the German Research Council, and by the EC (funding for GlycoHIT: contract no. 26060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Kopitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlötzer-Schrehardt, U., André, S., Janko, C. et al. Adhesion/growth-regulatory galectins in the human eye: localization profiles and tissue reactivities as a standard to detect disease-associated alterations. Graefes Arch Clin Exp Ophthalmol 250, 1169–1180 (2012). https://doi.org/10.1007/s00417-012-2021-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-012-2021-9

Keywords

Navigation