Skip to main content

Advertisement

Log in

Early local functional changes in the human diabetic retina: a global flash multifocal electroretinogram study

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate early functional changes of local retinal defects in type II diabetic patients using the global flash multifocal electroretinogram (MOFO mfERG).

Methods

Thirty-eight diabetic patients and 14 age-matched controls were recruited. Nine of the diabetics were free from diabetic retinopathy (DR), while the remainder had mild to moderate non-proliferative diabetic retinopathy. The MOFO mfERG was performed at high (98 %) and low (46 %) contrast levels. MfERG responses were grouped into 35 regions for comparison with DR classification at those locations. Z-scores of the regional mfERG responses were compared across different types of DR defects.

Results

The mfERG waveform consisted of the direct component (DC) and the induced component (IC). Local reduction in DC and IC amplitudes were found in diabetic patients with and without DR. With increasing severity of retinopathy, there was a further deterioration in amplitude of both components. Under MOFO mfERG paradigm, amplitude was a useful screening parameter.

Conclusion

The MOFO mfERG can help in detecting early functional anomalies before the appearance of visible signs, and may assist in monitoring further functional deterioration in diabetic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. LeRoith D, Taylor S, Olefsky J (2004) Diabetes mellitus - a fundamental and clinical text. 3rd edition. Lippincott Williams & Wilkins, Philadelphia, pp 458–459

    Google Scholar 

  2. Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27:1047–1053

    Article  PubMed  Google Scholar 

  3. Porta M, Bandello F (2002) Diabetic retinopathy - A clinical update. Diabetologia 45:1617–1634

    Article  PubMed  CAS  Google Scholar 

  4. Fong DS, Aiello L, Gardner TW, King GL, Blankenship G, Cavallerano JD, Ferris FL 3rd, Klein R (2003) Diabetic retinopathy. Diabetes Care 26:226–229

    Article  PubMed  Google Scholar 

  5. Carmichael TR, Carp GI, Welsh ND, Kalk WJ (2005) Effective and accurate screening for diabetic retinopathy using a 60 degree mydriatic fundus camera. S Afr Med J 95:57–61

    PubMed  CAS  Google Scholar 

  6. Aldington SJ, Kohner EM, Meuer S, Klein R, Sjolie AK (1995) Methodology for retinal photography and assessment of diabetic-retinopathy - the Eurodiab IDDM Complications Study. Diabetol 38:437–444

    Article  CAS  Google Scholar 

  7. Harding SP, Broadbent DM, Neoh C, White MC, Vora J (1995) Sensitivity and specificity of photography and direct ophthalmoscopy in screening for sight threatening eye disease: the Liverpool Diabetic Eye Study. BMJ 311:1131–1135

    Article  PubMed  CAS  Google Scholar 

  8. Yamamoto S, Kamiyama M, Nitta K, Yamada T, Hayasaka S (1996) Selective reduction of the S cone electroretinogram in diabetes. Br J Ophthalmol 80:973–975

    Article  PubMed  CAS  Google Scholar 

  9. Holopigian K, Greenstein VC, Seiple W, Hood DC, Carr RE (1997) Evidence for photoreceptor changes in patients with diabetic retinopathy. Invest Ophthalmol Vis Sci 38:2355–2365

    PubMed  CAS  Google Scholar 

  10. Kizawa J, Machida S, Kobayashi T, Gotoh Y, Kurosaka D (2006) Changes of oscillatory potentials and photopic negative response in patients with early diabetic retinopathy. Jpn J Ophthalmol 50:367–373

    Article  PubMed  Google Scholar 

  11. Luu CD, Szental JA, Lee SY, Lavanya R, Wong TY (2010) Correlation between retinal oscillatory potentials and retinal vascular caliber in type 2 diabetes. Invest Ophthalmol Vis Sci 51:482–486

    Article  PubMed  Google Scholar 

  12. Kern TS, Engerman RL (1995) Vascular lesions in diabetes are distributed non-uniformly within the retina. Exp Eye Res 60:545–549

    Article  PubMed  CAS  Google Scholar 

  13. Sutter EE, Tran D (1992) The field topography of ERG components in man: I. The photopic luminance response. Vision Res 32:433–446

    Article  PubMed  CAS  Google Scholar 

  14. Palmowski AM, Sutter EE, Bearse MA Jr, Fung W (1997) Mapping of retinal function in diabetic retinopathy using the multifocal electroretinogram. Invest Ophthalmol Vis Sci 38:2586–2596

    PubMed  CAS  Google Scholar 

  15. Shimada Y, Li Y, Bearse MA Jr, Sutter EE, Fung W (2001) Assessment of early retinal changes in diabetes using a new multifocal ERG protocol. Br J Ophthalmol 85:414–419

    Article  PubMed  CAS  Google Scholar 

  16. Fortune B, Schneck ME, Adams AJ (1999) Multifocal electroretinogram delays reveal local retinal dysfunction in early diabetic retinopathy. Invest Ophthalmol Vis Sci 40:2638–2651

    PubMed  CAS  Google Scholar 

  17. Bearse MA Jr, Han Y, Schneck ME, Barez S, Jacobsen C, Adams AJ (2004) Local multifocal oscillatory potential abnormalities in diabetes and early diabetic retinopathy. Invest Ophthalmol Vis Sci 45:3259–3265

    Article  PubMed  Google Scholar 

  18. Bronson-Castain KW, Bearse MA Jr, Neuville J, Jonasdottir S, King-Hooper B, Barez S, Schneck ME, Adams AJ (2009) Adolescents with type 2 diabetes early indications of focal retinal neuropathy, retinal thinning, and venular dilation. Retina 29:618–626

    Article  PubMed  Google Scholar 

  19. Sutter EE, Bearse MA Jr (1998) The retinal topography of local and lateral gain control mechanisms. Vision Science and its Applications, OSA Technical Digest Series 1:20–23

    Google Scholar 

  20. Hood DC, Greenstein V, Frishman L, Holopigian K, Viswanathan S, Seiple W, Ahmed J, Robson JG (1999) Identifying inner retinal contributions to the human multifocal ERG. Vision Res 39:2285–2291

    Article  PubMed  CAS  Google Scholar 

  21. Sutter EE, Shimada Y, Li Y, Bearse MA Jr (1999) Mapping inner retinal function through enhancement of adaptation components in the M-ERG. Vision Science and Its Applications, OSA Technical Digest Series 1:52–55

    Google Scholar 

  22. Chu PH, Chan HH, Ng YF, Brown B, Siu AW, Beale BA, Gilger BC, Wong F (2008) Porcine global flash multifocal electroretinogram: possible mechanisms for the glaucomatous changes in contrast response function. Vision Res 48:1726–1734

    Article  PubMed  Google Scholar 

  23. Lung JC, Chan HH (2010) Effects of luminance combinations on the characteristics of the global flash multifocal electroretinogram (mfERG). Graefes Arch Clin Exp Ophthalmol 248:1117–1125

    Article  PubMed  Google Scholar 

  24. Bearse MA Jr, Han Y, Schneck M, Adams A (2003) Enhancement and mapping of inner retinal contributions to the human multifocal electroretinogram (mfERG). Invest Ophthalmol Vis Sci 44: ARVO E-abstract 2696

  25. Wu S, Sutter EE (1995) A topographic study of oscillatory potentials in man. Vis Neurosci 12:1013–1025

    Article  PubMed  CAS  Google Scholar 

  26. Sutter EE, Bearse MA Jr (1999) The optic nerve head component of the human ERG. Vision Res 39:419–436

    Article  PubMed  CAS  Google Scholar 

  27. Early Treatment Diabetic Retinopathy Study Research Group (1991) Grading diabetic retinopathy from stereoscopic color fundus photographs—an extension of the modified Airlie House classification. ETDRS report number 10. Ophthalmology 98:786–806

    Google Scholar 

  28. Early Treatment Diabetic Retinopathy Study Research Group (1991) Fundus photographic risk factors for progression of diabetic retinopathy. ETDRS report number 12. Ophthalmology 98:823–833

    Google Scholar 

  29. Parisi V, Uccioli L (2001) Visual electrophysiological responses in persons with type 1 diabetes. Diabetes Metab Res Rev 17:12–18

    Article  PubMed  CAS  Google Scholar 

  30. Chen H, Zhang M, Huang S, Wu D (2008) The photopic negative response of flash ERG in nonproliferative diabetic retinopathy. Doc Ophthalmol 117:129–135

    Article  PubMed  Google Scholar 

  31. Vadala M, Anastasi M, Lodato G, Cillino S (2002) Electroretinographic oscillatory potentials in insulin-dependent diabetes patients: a long-term follow-up. Acta Ophthalmol 80:305–309

    Article  Google Scholar 

  32. Brinchmann-Hansen O, Dahl-Jorgensen K, Hanssen KF, Sandvik L (1992) Oscillatory potentials, retinopathy, and long-term glucose control in insulin-dependent diabetes. Acta Ophthalmol 70:705–712

    CAS  Google Scholar 

  33. Simonsen SE (1980) The value of the oscillatory potential in selecting juvenile diabetics at risk of developing proliferative retinopathy. Acta Ophthalmol 58:865–878

    CAS  Google Scholar 

  34. Kurtenbach A, Langrova H, Zrenner E (2000) Multifocal oscillatory potentials in type 1 diabetes without retinopathy. Invest Ophthalmol Vis Sci 41:3234–3241

    PubMed  CAS  Google Scholar 

  35. Onozu H, Yamamoto S (2003) Oscillatory potentials of multifocal electroretinogram in diabetic retinopathy. Doc Ophthalmol 106:327–332

    Article  PubMed  Google Scholar 

  36. Shinoda K, Rejdak R, Schuettauf F, Blatsios G, Volker M, Tanimoto N, Olcay T, Gekeler F, Lehaci C, Naskar R, Zagorski Z, Zrenner E (2007) Early electroretinographic features of streptozotocin-induced diabetic retinopathy. Clin Experiment Ophthalmol 35:847–854

    Article  PubMed  Google Scholar 

  37. Alder VA, Cringle SJ, Constable IJ (1983) The retinal oxygen profile in cats. Invest Ophthalmol Vis Sci 24:30–36

    PubMed  CAS  Google Scholar 

  38. Arden GB, Gunduz MK, Kurtenbach A, Volker M, Zrenner E, Gunduz SB, Kamis U, Ozturk BT, Okudan S (2010) A preliminary trial to determine whether prevention of dark adaptation affects the course of early diabetic retinopathy. Eye 24:1149–1155

    Article  PubMed  CAS  Google Scholar 

  39. Linsenmeier RA (1986) Effects of light and darkness on oxygen distribution and consumption in the cat retina. J Gen Physiol 88:521–542

    Article  PubMed  CAS  Google Scholar 

  40. Linsenmeier RA, Braun RD, McRipley MA, Padnick LB, Ahmed J, Hatchell DL, McLeod DS, Lutty GA (1998) Retinal hypoxia in long-term diabetic cats. Invest Ophthalmol Vis Sci 39:1647–1657

    PubMed  CAS  Google Scholar 

  41. Wangsa-Wirawan ND, Linsenmeier RA (2003) Retinal oxygen: fundamental and clinical aspects. Arch Ophthalmol 121:547–557

    Article  PubMed  Google Scholar 

  42. Barber AJ, Lieth E, Khin SA, Antonetti DA, Buchanan AG, Gardner TW (1998) Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest 102:783–791

    Article  PubMed  CAS  Google Scholar 

  43. Kaneko M, Sugawara T, Tazawa Y (2000) Electrical responses from the inner retina of rats with streptozotocin-induced early diabetes mellitus. J Jpn Ophthalmol Soc 101:775–778

    Google Scholar 

  44. Barber AJ (2003) A new view of diabetic retinopathy: a neurodegenerative disease of the eye. Prog Neuropsychopharmacol Biol Psychiatry 27:283–290

    Article  PubMed  CAS  Google Scholar 

  45. Greenstein VC, Hood DC, Ritch R, Steinberger D, Carr RE (1989) S (blue) cone pathway vulnerability in retinitis pigmentosa, diabetes and glaucoma. Invest Ophthalmol Vis Sci 30:1732–1737

    PubMed  CAS  Google Scholar 

  46. Bearse MA Jr, Sutter EE (1999) Contrast dependence of multifocal ERG components. Vision Science and its Applications, OSA Technical Digest Series 1:24–27

    Google Scholar 

  47. Chan HH, Ng YF, Chu PH (2011) Applications of the multifocal electroretinogram in the detection of glaucoma. Clin Exp Optom 94:247–258

    Article  PubMed  Google Scholar 

  48. Chu PH, Chan HH, Brown B (2006) Glaucoma detection is facilitated by luminance modulation of the global flash multifocal electroretinogram. Invest Ophthalmol Vis Sci 47:929–937

    Article  PubMed  Google Scholar 

  49. Schneck ME, Bearse MA Jr, Han Y, Barez S, Jacobsen C, Adams AJ (2004) Comparison of mfERG waveform components and implicit time measurement techniques for detecting functional change in early diabetic eye disease. Doc Ophthalmol 108:223–230

    Article  PubMed  Google Scholar 

  50. Bearse MA Jr, Han Y, Schneck ME, Adams AJ (2004) Retinal function in normal and diabetic eyes mapped with the slow flash multifocal electroretinogram. Invest Ophthalmol Vis Sci 45:296–304

    Article  PubMed  Google Scholar 

  51. Harrison WW, Bearse MA Jr, Ng JS, Jewell NP, Barez S, Burger D, Schneck ME, Adams AJ (2011) Multifocal electroretinograms predict onset of diabetic retinopathy in adult patients with diabetes. Invest Ophthalmol Vis Sci 52:772–777

    Article  PubMed  Google Scholar 

  52. Klemp K, Larsen M, Sander B, Vaag A, Brockhoff PB, Lund-Andersen H (2004) Effect of short-term hyperglycemia on multifocal electroretinogram in diabetic patients without retinopathy. Invest Ophthalmol Vis Sci 45:3812–3819

    Article  PubMed  Google Scholar 

  53. Masland RH (2001) Neuronal diversity in the retina. Curr Opin Neurobiol 11:431–436

    Article  PubMed  CAS  Google Scholar 

  54. Zhou W, Rangaswamy N, Ktonas P, Frishman LJ (2007) Oscillatory potentials of the slow-sequence multifocal ERG in primates extracted using the Matching Pursuit method. Vision Res 47:2021–2036

    Article  PubMed  Google Scholar 

  55. Simo R, Hernandez C (2009) Advances in the medical treatment of diabetic retinopathy. Diabetes Care 32:1556–1562

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by the Associated Fund (Research Postgraduate) from the Hong Kong Polytechnic University, Internal Research Grants (GU585, GU858) and the Niche Areas Myopia Research (J-BB7P) and Glaucoma Research (J-BB76) from the Hong Kong Polytechnic University. Special thanks to Prof. Brian Brown for his valued opinions.

Disclaimer

None of the authors have any proprietary interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry H. L. Chan.

Additional information

Summary statement

In this study, a modified multifocal electroretinogram paradigm was applied to investigate the human diabetic retina. Early functional deterioration was detected before any clinically visible retinopathy.

Presented in part at the July 2009 ISCEV meeting, Abano Terme, Padova, Italy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lung, J.C.Y., Swann, P.G. & Chan, H.H.L. Early local functional changes in the human diabetic retina: a global flash multifocal electroretinogram study. Graefes Arch Clin Exp Ophthalmol 250, 1745–1754 (2012). https://doi.org/10.1007/s00417-012-2010-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-012-2010-z

Keywords

Navigation