Skip to main content

Advertisement

Log in

Monocyte/macrophages promote vasculogenesis in choroidal neovascularization in mice by stimulating SDF-1 expression in RPE cells

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Monocyte-macrophages play important roles in choroidal neovascularization (CNV); however, the mechanism is unclear. This study investigated the effects of monocyte depletion on laser-induced CNV in mice, especially the involvement of bone marrow-derived cells (BMCs) and underlying molecular mechanisms.

Methods

Clodronate-liposomes (lip) were used to deplete monocytes and their effect on retinal pigmental epithelium (RPE) cells, endothelial cells, and BMCs was analyzed. Green fluorescent protein (GFP)-chimeric mice were developed by transplanting bone marrow cells from GFP transgenic mice to C57BL/6 J mice. CNV was induced by laser photocoagulation. Chimeric mice were intravenously treated with clodronate-lip, PBS-lip or PBS, 1 day before and after lasering. Histopathological and choroidal flatmount analysis were performed to measure CNV severity and BMCs recruitment. BMCs expression of endothelial cell marker CD31 and vascular smooth muscle cell marker α-SMA in CNV were detected by immunofluorescence. Expression of stromal cell-derived factor-1 (SDF-1) protein in vivo was detected by immunofluorescence as well as ELISA assay. SDF-1 was also examined by RT-PCR and ELISA in a human monocytes-RPE cells co-culturing system.

Results

No valid evidence for the toxicity of clodronate-lip was found. Depletion led to significant inhibition of CNV and BMCs recruitment into laser spots on days 3 and 14, reduced BMC expression of CD31 and α-SMA on day 14, and decreased expression of SDF-1 in vivo on day 3. SDF-1 was mostly within and around the RPE cells in the laser lesion. SDF-1 was dramatically up-regulated in RPE cells after co-culturing with monocytes.

Conclusions

Monocytes may promote experimental CNV, especially BMC contribution in mice, by promoting SDF-1 production in RPE cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Noël A, Jost M, Lambert V, Lecomte J, Rakic JM (2007) Anti-angiogenic therapy of exudative age-related macular degeneration: current progress and emerging concepts. Trends Mol Med 13:345–352

    Article  PubMed  Google Scholar 

  2. Chappelow AV, Kaiser PK (2008) Neovascular age-related macular degeneration: potential therapies. Drugs 68:1029–1036

    Article  PubMed  CAS  Google Scholar 

  3. Nussenblatt RB, Ferris F 3rd (2007) Age-related macular degeneration and the immune response: implications for therapy. Am J Ophthalmol 144:618–626

    Article  PubMed  CAS  Google Scholar 

  4. Coleman HR, Chan CC, Ferris FL 3rd, Chew EY (2008) Age-related macular degeneration. Lancet 372:1835–1845

    Article  PubMed  CAS  Google Scholar 

  5. Patel M, Chan CC (2008) Immunopathological aspects of age-related macular degeneration. Semin Immunopathol 30:97–110

    Article  PubMed  Google Scholar 

  6. Xu H, Chen M, Forrester JV (2009) Para-inflammation in the aging retina. Prog Retin Eye Res 28:348–368

    Article  PubMed  Google Scholar 

  7. Grossniklaus HE, Green WR (2004) Choroidal neovascularization. Am J Ophthalmol 137:496–503

    Article  PubMed  Google Scholar 

  8. Zou Y, Xu X, Chiou GC (2006) Effect of interleukin-1 blockers, CK112, and CK116 on rat experimental choroidal neovascularization in vivo and endothelial cell cultures in vitro. J Ocul Pharmacol Ther 22:19–25

    Article  PubMed  CAS  Google Scholar 

  9. Shi X, Semkova I, Müther PS, Dell S, Kociok N, Joussen AM (2006) Inhibition of TNF-α reduces laser-induced choroidal neovascularization. Exp Eye Res 83:1325–1334

    Article  PubMed  CAS  Google Scholar 

  10. Izumi-Nagai K, Nagai N, Ozawa Y, Mihara M, Ohsugi Y, Kurihara T, Koto T, Satofuka S, Inoue M, Tsubota K, Okano H, Oike Y, Ishida S (2007) Interleukin-6 receptor-mediated activation of signal transducer and activator of transcription-3 (STAT3) promotes choroidal neovascularization. Am J Pathol 170:2149–2158

    Article  PubMed  CAS  Google Scholar 

  11. Izumi-Nagai K, Nagai N, Ohgami K, Satofuka S, Ozawa Y, Tsubota K, Umezawa K, Ohno S, Oike Y, Ishida S (2007) Macular pigment lutein is antiinflammatory in preventing choroidal neovascularization. Arterioscler Thromb Vasc Biol 27:2555–2562

    Article  PubMed  CAS  Google Scholar 

  12. Sagara N, Kawaji T, Takano A, Inomata Y, Inatani M, Fukushima M, Tanihara H (2007) Effect of pitavastatin on experimental choroidal neovascularization in rats. Exp Eye Res 84:1074–1080

    Article  PubMed  CAS  Google Scholar 

  13. Tsutsumi C, Sonoda KH, Egashira K, Qiao H, Hisatomi T, Nakao S, Ishibashi M, Charo IF, Sakamoto T, Murata T, Ishibashi T (2003) The critical role of ocular infiltrating macrophages in the development of choroidal neovascularization. J Leukoc Biol 74:25–32

    Article  PubMed  CAS  Google Scholar 

  14. Espinosa-Heidmann DG, Suner IJ, Monroy D, Csaky KG, Cousins SW (2003) Macrophage depletion diminishes lesion size and severity in experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 44:3586–3592

    Article  PubMed  Google Scholar 

  15. Sakurai E, Anand A, Ambati BK, van Rooijen N, Ambati J (2003) Macrophage depletion inhibits experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 44:3578–3585

    Article  PubMed  Google Scholar 

  16. DG Espinosa, A Caicedo, EP Hernandez, SW Cousins (2003) Adult bone marrow derived progenitor cells contribute to choroidal neovascularization and modulate the severity. Invest Ophthalmol Vis Sci 44: E-Abstract 3936.

    Google Scholar 

  17. DG Espinosa, Caicedo, EP Hernandez, S Pereira, Y. Pina, KG Csaky, SW Cousins (2004) Aged bone marrow transfers age–related pathology into young recipients in experimental choroidal neovascularization (CNV). Invest Ophthalmol Vis Sci 45: E-Abstract 1853.

  18. Sengupta N, Caballero S, Mames RN, Butler JM, Scott EW, Grant MB (2003) The role of adult bone marrow derived stem cells in choroidal neovascularization. Invest Ophthalmol Vis Sci 44:4908–4913

    Article  PubMed  Google Scholar 

  19. Sengupta N, Caballero S, Mames RN, Timmers AM, Saban D, Grant MB (2005) Preventing stem cell incorporation into choroidal neovascularization by targeting homing and attachment factors. Invest Ophthalmol Vis Sci 46:343–348

    Article  PubMed  Google Scholar 

  20. Apte RS, Richter J, Herndon J, Ferguson TA (2006) Macrophages inhibit neovascularization in a murine model of age-related macular degeneration. PloS Med 3:e310

    Article  PubMed  Google Scholar 

  21. Van Rooijen N, Sanders A (1994) Liposome mediated depletion of macrophages: Mechanism of action, preparation of liposomes and applications. J Immunol Meth 174:83–93

    Article  Google Scholar 

  22. Zhao W, Wang YS, Hui YN, Zhu J, Zhang P, Li X, Dou GR (2008) Inhibition of proliferation, migration and tube formation of choroidal microvascular endothelial cells by targeting HIF-1alpha with short hairpin RNA-expressing plasmid DNA in human RPE cells in a coculture system. Graefes Arch Clin Exp Ophthalmol 246:1413–1422

    Article  PubMed  CAS  Google Scholar 

  23. Hou HY, Liang HL, Wang YS, Zhang ZX, Wang BR, Shi YY, Dong X, Cai Y (2010) A therapeutic strategy for choroidal neovascularization based on recruitment of mesenchymal stem cells to the sites of lesions. Mol Ther 18(10):1837–1845

    Article  PubMed  CAS  Google Scholar 

  24. Hou HY, Wang YS, Xu JF, Wang YC, Liu JP (2006) The dynamic conduct of bone marrow-derived cells in the choroidal neovascularization microenvironment. Curr Eye Res 31:1051–1061

    Article  PubMed  Google Scholar 

  25. Hou HY, Wang YS, Xu JF, Wang BR (2008) Nicotine promotes contribution of bone marrow-derived cells to experimental choroidal neovascularization in mice. Exp Eye Res 86:983–990

    Article  PubMed  CAS  Google Scholar 

  26. Wragg A, Mellad JA, Beltran LE, Konoplyannikov M, San H, Boozer S, Deans RJ, Mathur A, Lederman RJ, Kovacic JC, Boehm M (2008) VEGFR1/CXCR4-positive progenitor cells modulate local inflammation and augment tissue perfusion by a SDF-1-dependent mechanism. J Mol Med 86:1221–1232

    Article  PubMed  CAS  Google Scholar 

  27. de Almeida MC, Silva AC, Barral A, Barral Netto M (2000) A simple method for human peripheral blood monocyte isolation. Mem Inst Oswaldo Cruz 95:221–223

    Article  PubMed  Google Scholar 

  28. Yoshida A, Elner SG, Bian ZM, Kunkel SL, Lukacs NW, Elner VM (2001) Differential chemokine regulation by Th2 cytokines during human RPE-monocyte co-culture. Invest Ophthalmol Vis Sci 42:1631–1638

    PubMed  CAS  Google Scholar 

  29. Bian ZM, Elner SG, Elner (2007) Thrombin-induced VEGF expression in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 48:2738–2746

    Article  PubMed  Google Scholar 

  30. Moldovan NI (2002) Role of monocytes and macrophages in adult angiogenesis: A light at the tunnel’s end. J Hematother Stem Cell Res 11:179–194

    Article  PubMed  Google Scholar 

  31. Kimura YN, Watari K, Fotovati A, Hosoi F, Yasumoto K, Izumi H, Kohno K, Umezawa K, Iguchi H, Shirouzu K, Takamori S, Kuwano M, Ono M (2007) Inflammatory stimuli from macrophages and cancer cells synergistically promote tumor growth and angiogenesis. Cancer Sci 98:2009–2018

    Article  PubMed  CAS  Google Scholar 

  32. Cursiefen C, Chen L, Borges LP, Jackson D, Cao J, Radziejewski C, D’Amore PA, Dana MR, Wiegand SJ (2004) Streilein JW (2004) VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest 113:1040–1050

    PubMed  CAS  Google Scholar 

  33. Sunderkotter C, Nikolic T, Dillon MJ, Van Rooijen N, Stehling M, Drevets DA, Leenen PJ (2004) Subpopulations of mouse blood monocyte differ in maturation stage and inflammation response. J Immunol 172:4410–4417

    PubMed  Google Scholar 

  34. Apte RS, Richter J, Herndon J, Ferguson TA (2006) Macrophages inhibit neovascularization in a murine model of age-related macular degeneration. PloS Med 3(8):e310

    Article  PubMed  Google Scholar 

  35. Espinosa-Heidmann DG, Reinoso MA, Pina Y, Csaky KG, Caicedo A, Cousins SW (2005) Quantitative enumeration of vascular smooth muscle cells and endothelial cells derived from bone marrow precursors in experimental choroidal neovascularization. Exp Eye Res 80:369–378

    Article  PubMed  CAS  Google Scholar 

  36. Espinosa-Heidmann DG, Caicedo A, Hernandez EP, Csaky KG, Cousins SW (2003) Bone marrow-derived progenitor cells contribute to experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 44:4914–4919

    Article  PubMed  Google Scholar 

  37. Butler JM, Guthrie SM, Koc M, Afzal A, Caballero S, Brooks HL, Mames RN, Segal MS, Grant MB, Scott EW (2005) SDF-1 is both necessary and sufficient to promote proliferative retinopathy. J Clin Invest 115:86–93

    PubMed  CAS  Google Scholar 

  38. Jin DK, Shido K, Kopp H-G, Petit I, Shmelkov SV, Young LM, Hooper AT, Amano H, Avecilla ST, Heissig B, Hattori K, Zhang F, Hicklin DJ, Wu Y, Zhu Z, Dunn A, Salari H, Werb Z, Hackett NR, Crystal RG, Lyden D, Rafii S (2006) Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nat Med 12:557–567

    Article  PubMed  CAS  Google Scholar 

  39. Grunewald M, Avraham I, Dor Y, Bachar-Lustig E, Itin A, Jung S, Chimenti S, Landsman L, Abramovitch R, Keshet E (2006) VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124:175–189

    Article  PubMed  CAS  Google Scholar 

  40. Guerin E, Sheridan C, Assheton D, Kent D, Wong D, Grant M, Hiscott P (2008) SDF1-alpha is associated with VEGFR-2 in human choroidal neovascularisation. Microvasc Res 75:302–307

    Article  PubMed  CAS  Google Scholar 

  41. Holtkamp GM, Kijlstra A, Peek R, de Vos AF (2001) Retinal pigment epithelium-immune system interactions: cytokine production and cytokine-induced changes. Prog Retin Eye Res 20:29–48

    Article  PubMed  CAS  Google Scholar 

  42. Bian ZM, Elner SG, Yoshida A, Elner VM (2003) Human RPE-monocyte co-culture induces chemokine gene expression through activation of MAPK and NIK cascade. Exp Eye Res 76:573–583

    Article  PubMed  CAS  Google Scholar 

  43. Oh H, Takagi H, Takagi C, Suzuma K, Otani A, Ishida K, Matsumura M, Ogura Y, Honda Y (1999) The potential angiogenic role of macrophages in the formation of choroidal neovascular membranes. Invest Ophthalmol Vis Sci 40:1891–1898

    PubMed  CAS  Google Scholar 

  44. Crane IJ, Wallace CA, McKillop-Smith S, Forrester JV (2000) CXCR4 receptor expression on human retinal pigment epithelial cells from the blood-retina barrier leads to chemokine secretion and migration in response to stromal cell-derived factor 1. J Immunol 165:4372–4378

    PubMed  CAS  Google Scholar 

  45. Hill WD, Hess DC, Martin-Studdard A, Carothers JJ, Zheng J, Hale D, Maeda M, Fagan SC, Carroll JE, Conway SJ (2004) SDF-1 (CXCL12) is upregulated in the ischemic penumbra following stroke: association with bone marrow cell homing to injury. J Neuropathol Exp Neurol 63:84–96

    PubMed  CAS  Google Scholar 

  46. Luft FC (2008) Mononuclear inflammatory cells and angiogenesis. J Mol Med 86:1193–1195

    Article  PubMed  Google Scholar 

  47. Takahashi K, Shimokado K, Yoshida M (2006) SDF-1-induced adhesion of monocytes to vascular endothelium is modulated by azelnidipine via protein kinase C inhibition. Eur J Pharmacol 552:162–169

    Article  PubMed  CAS  Google Scholar 

  48. Kinnaird T, Stabile E, Burnett MS, Shou M, Lee CW, Barr S, Fuchs S, Epstein SE (2004) Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109:1543–1549

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No.30371516, 30672291). The project was sponsored partly by the equipment donation from the Alexander von Humboldt Foundation in Germany (to YS Wang, V-8151/02085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-sheng Wang.

Additional information

This work was supported by grants from National Natural Science Foundation of China (No.30371516, 30672291) and National Basic Research Program of China (973 Program / 2011CB510200).We have full control of all primary data, and agree to allow Graefe’s Archive for Clinical and Experimental Ophthalmology to review our data upon request.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 29 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Yy., Wang, Ys., Zhang, Zx. et al. Monocyte/macrophages promote vasculogenesis in choroidal neovascularization in mice by stimulating SDF-1 expression in RPE cells. Graefes Arch Clin Exp Ophthalmol 249, 1667–1679 (2011). https://doi.org/10.1007/s00417-011-1699-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-011-1699-4

Keywords

Navigation