Skip to main content

Advertisement

Log in

Triamcinolone acetonide prevents oxidative stress-induced tight junction disruption of retinal pigment epithelial cells

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Oxidative stress is known to disrupt the integrity of retinal pigment epithelium (RPE) tight junctions. The goal of this study is to evaluate the effect of triamcinolone acetonide (TA) on the junctional integrity of RPE under oxidative stress and to identify the underlying mechanisms.

Methods

Second passage porcine RPE cells were cultured on 6-well membrane inserts until 4 weeks after reaching confluence. Cells were incubated with TA (10−5 M) for 30 min. FITC-containing medium was added to the upper chamber (cell’s apical side). The cells were then challenged with 1 mM Hydrogen Peroxide (H2O2). After 5 h, the fluorescence intensity of the medium from lower chamber (cell’s basolateral side) was measured using a fluorescence spectrofluorophotometer. This transepithelial flux of FITC-dextran was measured until the 21st day. The immunolocalization of occludin and F-actin was examined with fluorescence microscope. Reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio was determined by a colorimetric assay kit.

Results

Non-lethal oxidative stress by H2O2 increased transepithelial flux of FITC-dextran significantly. TA inhibited this increase and preserved the lower flux through the whole experimental period. This permeability change by H2O2 was reversible and recovered to the normal level within 3 weeks. In immunohistological study, H2O2 reduced linear occludin staining at the cell border and increased actin stress fibers. TA prevented H2O2-induced disruption of junctional assembly of occludin and F-actin. Glutathione assay demonstrated that intracellular GSH/GSSG ratio decreased significantly with H2O2, while TA preserved this ratio by up-regulating GSH synthesis.

Conclusions

TA has a protective effect against oxidative stress-induced disruption of RPE tight junction by preserving cellular redox state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fukagawa NK, Li M, Liang P, Russell JC, Sobel BE, Absher PM (1999) Aging and high concentrations of glucose potentiate injury to mitochondrial DNA. Free Radic Biol Med 27:1437–1443, doi:10.1016/S0891-5849(99)00189-6

    Article  PubMed  CAS  Google Scholar 

  2. Winkler BS, Boulton ME, Gottsch JD, Sternberg P (1999) Oxidative damage and age-related macular degeneration. Mol Vis 5:32–43

    PubMed  CAS  Google Scholar 

  3. Miceli MV, Liles MR, Newsome DA (1994) Evaluation of oxidative processes in human pigment epithelial cells associated with retinal outer segment phagocytosis. Exp Cell Res 214:242–249, doi:10.1006/excr.1994.1254

    Article  PubMed  CAS  Google Scholar 

  4. Ruberti JW, Curcio CA, Millican CL, Menco BP, Huang JD, Johnson M (2003) Quick-freeze/deep-etch visualization of age-related lipid accumulation in Bruch's membrane. Invest Ophthalmol Vis Sci 44:1753–1759, doi:10.1167/iovs.02-0496

    Article  PubMed  Google Scholar 

  5. Tate DJ Jr, Miceli MV, Newsome DA (1995) Phagocytosis and H2O2 induce catalase and metallothionein gene expression in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 36:1271–1279

    PubMed  Google Scholar 

  6. Ballinger SW, Van Houten B, Jin GF, Conklin CA, Godley BF (1999) Hydrogen peroxide causes significant mitochondrial DNA damage in human RPE cells. Exp Eye Res 68:765–772, doi:10.1006/exer.1998.0661

    Article  PubMed  CAS  Google Scholar 

  7. Wong CG, Lin NG (1989) Induction of stress proteins in cultured human RPE-derived cells. Curr Eye Res 8:537–545, doi:10.3109/02713688908995751

    Article  PubMed  CAS  Google Scholar 

  8. Kerendian J, Enomoto H, Wong CG (1992) Induction of stress proteins in SV-40 transformed human RPE-derived cells by organic oxidants. Curr Eye Res 11:385–396, doi:10.3109/02713689209001792

    Article  PubMed  CAS  Google Scholar 

  9. Bailey TA, Kanuga N, Romero IA, Greenwood J, Luthert PJ, Cheetham ME (2004) Oxidative stress affects the junctional integrity of retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 45:675–684, doi:10.1167/iovs.03-0351

    Article  PubMed  Google Scholar 

  10. Hackett SF, Schoenfeld CL, Freund J, Gottsch JD, Bhargave S, Campochiaro PA (1997) Neurotrophic factors, cytokines and stress increase expression of basic fibroblast growth factor in retinal pigmented epithelial cells. Exp Eye Res 64:865–873, doi:10.1006/exer.1996.0256

    Article  PubMed  CAS  Google Scholar 

  11. Alizadeh M, Wada M, Gelfman CM, Handa JT, Hjelmeland LM (2001) Downregulation of differentiation specific gene expression by oxidative stress in ARPE-19 cells. Invest Ophthalmol Vis Sci 42:2706–2713

    PubMed  CAS  Google Scholar 

  12. Strunnikova N, Zhang C, Teichberg D, Cousins SW, Baffi J, Becker KG, Csaky KG (2004) Survival of retinal pigment epithelium after exposure to prolonged oxidative injury: a detailed gene expression and cellular analysis. Invest Ophthalmol Vis Sci 45:3767–3777, doi:10.1167/iovs.04-0311

    Article  PubMed  Google Scholar 

  13. Guay J, Lambert H, Gingras-Breton G, Lavoie JN, Huot J, Landry J (1997) Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27. J Cell Sci 110:357–368

    PubMed  CAS  Google Scholar 

  14. Forrest VJ, Kang YH, McClain DE, Robinson DH, Ramakrishnan N (1994) Oxidative stress-induced appoptosi prevented by Trolox. Free Radic Biol Med 16:675–684, doi:10.1016/0891-5849(94)90182-1

    Article  PubMed  CAS  Google Scholar 

  15. Geiger RC, Waters CM, Kamp DW, Glucksberg MR (2005) KGF prevents oxygen-mediated damage in ARPE-19 cells. Invest Ophthalmol Vis Sci 46:3435–3442, doi:10.1167/iovs.04-1487

    Article  PubMed  Google Scholar 

  16. Ho TC, Yang YC, Cheng HC, Wu AC, Chen SL, Tsao YP (2006) Pigment epithelium-derived factor protects retinal pigment epithelium from oxidant-mediated barrier dysfunction. Biochem Biophys Res Commun 342:372–378, doi:10.1016/j.bbrc.2006.01.164

    Article  PubMed  CAS  Google Scholar 

  17. Negi AK, Vernon SA, Lim CS, Owen-Armstrong K (2005) Intravitreal triamcinolone improves vision in eyes with chronic diabetic macular oedema refractory to laser photocoagulation. Eye 19:747–751, doi:10.1038/sj.eye.6701636

    Article  PubMed  CAS  Google Scholar 

  18. Toda J, Fukushima H, Kato S (2007) Injection of triamcinolone acetonide into the posterior sub-tenon capsule for treatment of diabetic macular edema. Retina 27:764–769, doi:10.1097/IAE.0b013e318030bfcd

    Article  PubMed  Google Scholar 

  19. Jonas JB, Söfker A (2001) Intraocular injection of crystalline cortisone as adjunctive treatment of diabetic macular edema. Am J Ophthalmol 132:425–427, doi:10.1016/S0002-9394(01)01010-8

    Article  PubMed  CAS  Google Scholar 

  20. Karacorlu M, Ozdemir H, Karacorlu S, Alacali N, Mudun B, Burumcek E (2005) Intravitreal triamcinolone as a primary therapy in diabetic macular oedema. Eye 19:382–386, doi:10.1038/sj.eye.6701512

    Article  PubMed  CAS  Google Scholar 

  21. Ozdek S, Deren YT, Gurelik G, Hasanreisoglu B (2008) Posterior subtenon triamcinolone, intravitreal triamcinolone and grid laser photocoagulation for the treatment of macular edema in branch retinal vein occlusion. Ophthalmic Res 40:26–31, doi:10.1159/000111155

    Article  PubMed  CAS  Google Scholar 

  22. Obata R, Iriyama A, Inoue Y, Takahashi H, Tamaki Y, Yanagi Y (2007) Triamcinolone acetonide suppresses early proangiogenic response in retinal pigment epithelial cells after photodynamic therapy in vitro. Br J Ophthalmol 91:100–104, doi:10.1136/bjo.2006.098004

    Article  PubMed  CAS  Google Scholar 

  23. Liggett PE, Colina J, Chaudhry NA, Tom D, Haffner G (2006) Triple therapy of intravitreal triamcinolone, photodynamic therapy, and pegaptanib sodium for choroidal neovascularization. Am J Ophthalmol 142:1072–1074, doi:10.1016/j.ajo.2006.07.029

    Article  PubMed  CAS  Google Scholar 

  24. Spaide RF, Sorenson J, Maranan L (2005) Combined photodynamic therapy and intravitreal triamcinolone for nonsubfoveal choroidal neovascularization. Retina 25:685–690, doi:10.1097/00006982-200509000-00001

    Article  PubMed  Google Scholar 

  25. Ito M, Okubo A, Sonoda Y, Yamakiri K, Sakamoto T (2006) Intravitreal triamcinolone acetonide for exudative age-related macular degeneration among Japanese patients. Ophthalmologica 220:118–124, doi:10.1159/000090577

    Article  PubMed  Google Scholar 

  26. Karacorlu M, Karacorlu SA, Ozdemir H, Senturk F (2007) Intravitreal triamcinolone acetonide for treatment of serous macular detachment in central retinal vein occlusion. Retina 27:1026–1030

    Article  PubMed  Google Scholar 

  27. Sakamoto T, Miyazaki M, Hisatomi T, Nakamura T, Ueno A, Itaya K, Ishibashi T (2002) Triamcinolone-assisted pars plana vitrectomy improves the surgical procedures and decreases the postoperative blood-ocular barrier breakdown. Graefes Arch Clin Exp Ophthalmol 240:423–442, doi:10.1007/s00417-002-0454-2

    Article  PubMed  Google Scholar 

  28. Kang SW, Park SC, Cho HY, Kang JH (2007) Triple therapy of vitrectomy, intravitreal triamcinolone, and macular laser photocoagulation for intractable diabetic macular edema. Am J Ophthalmol 144:878–885, doi:10.1016/j.ajo.2007.07.044

    Article  PubMed  CAS  Google Scholar 

  29. Shimura M, Nakazawa T, Yasuda K, Shiono T, Iida T, Sakamoto T, Nishida K (2008) Comparative Therapy Evaluation of Intravitreal Bevacizumab and Triamcinolone Acetonide on Persistent Diffuse Diabetic Macular Edema. Am J Ophthalmol 145:854–861, doi:10.1016/j.ajo.2007.12.031

    Article  PubMed  CAS  Google Scholar 

  30. Roth DB, Realini T, Feuer WJ, Radhakrishnan R, Gloth J, Heimmel MR, Fechtner RD, Yarian DL, Green S (2008) Short-term complications of intravitreal injection of triamcinolone acetonide. Retina 28:66–70

    Article  PubMed  Google Scholar 

  31. Yamashita T, Uemura A, Kita H, Sakamoto T (2007) Intraocular pressure after intravitreal injection of triamcinolone acetonide following vitrectomy for macular edema. J Glaucoma 16:220–224, doi:10.1097/IJG.0b013e31802d6e16

    Article  PubMed  Google Scholar 

  32. Bhavsar AR, Ip MS, Glassman AR, DRCRnet and the SCORE Study Groups (2007) The risk of endophthalmitis following intravitreal triamcinolone injection in the DRCRnet and SCORE clinical trials. Am J Ophthalmol 144:454–456, doi:10.1016/j.ajo.2007.04.011

    Article  PubMed  CAS  Google Scholar 

  33. Chung H, Hwang JJ, Koh JY, Kim JG, Yoon YH (2007) Triamcinolone acetonide-mediated oxidative injury in retinal cell culture: comparison with dexamethasone. Invest Ophthalmol Vis Sci 48:5742–5749, doi:10.1167/iovs.07-0566

    Article  PubMed  Google Scholar 

  34. Chang YS, Wu CL, Tseng SH, Kuo PY, Tseng SY (2007) Cytotoxicity of triamcinolone acetonide on human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 48:2792–2798, doi:10.1167/iovs.06-1146

    Article  PubMed  Google Scholar 

  35. Albini TA, Abd-El-Barr MM, Carvounis PE, Iyer MN, Lakhanpal RR, Pennesi ME, Chevez-Barrios P, Wu SM, Holz ER (2007) Long-term retinal toxicity of intravitreal commercially available preserved triamcinolone acetonide (Kenalog) in rabbit eyes. Invest Ophthalmol Vis Sci 48:390–395, doi:10.1167/iovs.06-0145

    Article  PubMed  Google Scholar 

  36. Yu SY, Damico FM, Viola F, D'Amico DJ, Young LH (2006) Retinal toxicity of intravitreal triamcinolone acetonide: a morphological study. Retina 26:531–536, doi:10.1097/00006982-200605000-00006

    Article  PubMed  Google Scholar 

  37. Penfold PL, Wen L, Madigan MC, Gillies MC, King NJ, Provis JM (2000) Triamcinolone acetonide modulates permeability and intercellular adhesion molecule-1 (ICAM-1) expression of the ECV304 cell line: implications for maculr degeneration. Clin Exp Immunol 121:458–465, doi:10.1046/j.1365-2249.2000.01316.x

    Article  PubMed  CAS  Google Scholar 

  38. Guzman J, Ruiz J, Eshraghi AA, Polak M, Garnham C, Balkany TJ, Van de Water TR (2006) Triamcinolone acetonide protects auditory hair cells from 4-hydroxy-2,3-nonenal (HNE) ototoxicity in vitro. Acta Otolaryngol 126:685–690, doi:10.1080/00016480500492018

    Article  PubMed  CAS  Google Scholar 

  39. Matsuda S, Gomi F, Oshima Y, Tohyama M, Tano Y (2005) Vascular endothelial growth factor reduced and connective tissue growth factor induced by triamcinolone in ARPE 19 cells under oxidative stress. Invest Ophthalmol Vis Sci 46:1062–1068, doi:10.1167/iovs.04-0761

    Article  PubMed  Google Scholar 

  40. Zhang X, Bao S, Lai D, Rapkins RW, Gillies MC (2008) Intravitreal Triamcinolone acetonide inhibites breakdown of the blood-retinal barrier through differential regulation of VEGF-A and its receptors in early diabetic retinas. Diabetes 57:1026–1033, doi:10.2337/db07-0982

    Article  PubMed  CAS  Google Scholar 

  41. Kim YH, Choi MY, Kim YS, Park CH, Lee JH, Chung IY, Yoo JM, Choi WS, Cho GJ, Kang SS (2007) Triamcinolone acetonide protects the rat retina from STZ-induced acute inflammation and early vascular leakage. Life Sci 81:1167–1173, doi:10.1016/j.lfs.2007.08.024

    Article  PubMed  CAS  Google Scholar 

  42. Yanagihara N, Moriwaki M, Shiraki K, Miki T, Otani S (1996) The involvement of polyamines in the proliferation of cultured retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 37:1975–1983

    PubMed  CAS  Google Scholar 

  43. Ballinger SW, Van Houten B, Jin GF, Godley BF (1999) Hydrogen peroxide causes significant mitochondrial DNA damage in human RPE cells. Exp Eye Res 68:765–772, doi:10.1006/exer.1998.0661

    Article  PubMed  CAS  Google Scholar 

  44. Liang FQ, GOldey BF (2003) Oxidative stree-induced mitochondrial DNA damage in human retinal pigment epithelial cells: a possible mechanism for RPE aging and age-related macular degeneration. Exp Eye Res 76:397–403, doi:10.1016/S0014-4835(03)00023-X

    Article  PubMed  CAS  Google Scholar 

  45. Dalle-Donne I, Rossi R, Milzani A, Di Simplicio P, Colombo R (2001) The actin cytoskelton response to oxidants: from small heat shock protein phosphorylation to changes in the redox state of actin itself. Free Radic Biol Med 31:1624–1632, doi:10.1016/S0891-5849(01)00749-3

    Article  PubMed  CAS  Google Scholar 

  46. Schraufstatter IU, Hinshaw DB, Hyslop PA, Spragg RG, Cochrane CG (1986) Oxidant injury of cells: DNA strand-breaks activate polyadenosine diphosphate-ribose polymerase and lead to depletion of nicotinamide adenine dinucleotide. J Clin Invest 77:1312–1320

    Article  PubMed  CAS  Google Scholar 

  47. Powell DW (1981) Barrier function of epithelia. Am J Physiol 241:G275–G288

    PubMed  CAS  Google Scholar 

  48. Wittchen ES, Haskins J, Stevenson BR (1999) Protein interactions at the tight junctions. Actin has multiple binding partners, and ZO-1 forms independent complexes with ZO-2 and ZO-3. J Biol Chem 274:35179–35185, doi:10.1074/jbc.274.49.35179

    CAS  Google Scholar 

  49. Madara JL, Barenberg D, Carlson S (1986) Effects of cytochalasin D on Occludin Junctional of intestinal absorptive cells: further evidence that the cytoskeleton may influence paracellular permeability and junctional charge selectivity. J Cell Biol 102:2125–2136, doi:10.1083/jcb.102.6.2125

    Article  PubMed  CAS  Google Scholar 

  50. Huot J, Houle F, Marceau F, Landry J (1997) Oxidative stress-induced actin reorganization mediated by the p38 mitogen-activated protein kinase/heat shock protein 27 pathway in vascular endothelial cells. Circ Res 80:383–392

    PubMed  CAS  Google Scholar 

  51. Pichon S, Bryckaert M, Berrou E (2004) Control of actin dynamics by p38 MAP kinase-Hsp27 distribution in the lamellipodium of smooth muscle cells. J Cell Sci 117:2569–2577, doi:10.1242/jcs.01110

    Article  PubMed  CAS  Google Scholar 

  52. Nguyen A, Chen P, Cai H (2004) Role of CaMKII in hydrogen peroxide activation of ERK1/2, p38 MAPK, HSP27 and actin reorganization in endothelial cells. FEBS Lett 572:307–313, doi:10.1016/j.febslet.2004.06.061

    Article  PubMed  CAS  Google Scholar 

  53. Marin-Castaño ME, Csaky KG, Cousin SW (2005) Nonlethal oxidant injury to human retinal pigment epithelium cells causes cell membrane blebbing but decreased MMP-2 activity. Invest Ophthalmol Vis Sci 46:3331–3340, doi:10.1167/iovs.04-1224

    Article  PubMed  Google Scholar 

  54. Marin-Castaño ME, Striker GE, Akcazar O, Catanuto P, Espinosa-Heidmann DG, Cousins SW (2006) Repetitive nonlethal oxidant injury to retinal pigment epithelium decreased extracellular matrix turnover in vitro and induced sub-RPE deposits in vivo. Invest Ophthalmol Vis Sci 47:4098–4112, doi:10.1167/iovs.05-1230

    Article  PubMed  Google Scholar 

  55. Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760, doi:10.1146/annurev.bi.52.070183.003431

    Article  PubMed  CAS  Google Scholar 

  56. Kosower NS, Kosower EM (1978) The glutathione statue of the cell. Int Rev Cytol 54:109–160, doi:10.1016/S0074-7696(08)60166-7

    Article  PubMed  CAS  Google Scholar 

  57. Reed DJ (1990) Gluathione : Toxicological implications. Annu Rev Pharmacol Toxicol 30:603–631, doi:10.1146/annurev.pa.30.040190.003131

    Article  PubMed  CAS  Google Scholar 

  58. Sternberg P Jr, Davidson PC, Jones DP, Hagen TM, Reed RL (1993) Protection of retinal pigment epithelium from oxidative injury by glutathione and precursors. Invest Ophthalmol Vis Sci 34:3661–3668

    PubMed  Google Scholar 

  59. Nelson KC, Carlson JL, Newman ML, Sternberg P Jr, Jones DP, Kavanagh TJ, Diaz D, Cai J, Wu M (1999) Effect of dietary inducer dimethylfumarate on glutathione in cultured human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 40:1927–1935

    PubMed  CAS  Google Scholar 

  60. Wood JP, Pergande G, Osborne NN (1998) Prevention of glutathione depletion-induced apoptosis in cultured human RPE cells by flupirtine. Restor Neurol Neurosci 12:119–125

    PubMed  CAS  Google Scholar 

  61. Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30:1191–1212, doi:10.1016/S0891-5849(01)00480-4

    Article  PubMed  CAS  Google Scholar 

  62. Li X, Liu Z, Luo C, Jia H, Sun L, Hou B, Shen W, Packer L, Cotman CW, Liu J (2008) Lipoamide protects retinal pigment epithelial cells from oxidative stress and mitochondrial dysfunction. Free Radic Biol Med 44:1465–1474, doi:10.1016/j.freeradbiomed.2008.01.004

    Article  PubMed  CAS  Google Scholar 

  63. Chang JY, Bora PS, Bora NS (2008) Prevention of oxidative stress-induced retinal pigment epithelial cell death by the PPARgamma agonists, 15-Deoxy-Delta 12, 14-Prostaglandin J(2). PPAR Res :720163

  64. Shamsi FA, Chaudhry IA, Boulton ME, Al-Rajhi AA (2007) L-carnitine protects human retinal pigment epithelial cells from oxidative damage. Curr Eye Res 32:575–584, doi:10.1080/02713680701363833

    Article  PubMed  CAS  Google Scholar 

  65. Ha KN, Chen Y, Cai J, Sternberg P Jr (2006) Increased glutathione synthesis through an ARE-Nrf2-dependent pathway by zinc in the RPE: implication for protection against oxidative stress. Invest Ophthalmol Vis Sci 47:2709–2715, doi:10.1167/iovs.05-1322

    Article  PubMed  Google Scholar 

  66. Tate DJ, Newsome DA (2006) A novel zinc compound (zinc monocysteine) enhances the antioxidant capacity of human retinal pigment epithelial cells. Curr Eye Res 31:675–683, doi:10.1080/02713680600801024

    Article  PubMed  CAS  Google Scholar 

  67. Romero IA, Radewicz K, Jubin E, Michel CC, Greenwood J, Couraud PO, Adamson P (2003) Changes in cytoskeletal and tight junctional proteins correlate with decreased permeability induced by dexamethasone in cultured rat brain endothelial cells. Neurosci Lett 344:112–116, doi:10.1016/S0304-3940(03)00348-3

    Article  PubMed  CAS  Google Scholar 

  68. Zettl KS, Sjaastad PM, Riskin G, Parry G, Machen TE, Fierstone GL (1992) Glucocorticoid-induced formation of tight junctions in mouse mammary epithelial cells in vitro. Proc Natl Acad Sci USA 89:9069–9073, doi:10.1073/pnas.89.19.9069

    Article  PubMed  CAS  Google Scholar 

  69. Antonetti DA, Wolpert EB, DeMaio L, Harhaj NS, Scaduto RC (2002) Hydrocortisone decreases retinal endothelial cell water and solute flux coincident with increased content and decreased phosphorylation of occludin. J Neurochem 80:667–677, doi:10.1046/j.0022-3042.2001.00740.x

    Article  PubMed  CAS  Google Scholar 

  70. Ebrahem Q, Minamoto A, Hoppe G, Anand-Apte B, Sears JE (2006) Triamcinolone acetonide inhibits IL-6 and VEGF-induced angiogenesis downstream of the IL-6 and VEGF receptors. Invest Ophthalmol Vis Sci 47:4935–4941, doi:10.1167/iovs.05-1651

    Article  PubMed  Google Scholar 

  71. Okada A, Wakabayashi T, Kojima E, Asano Y, Hida T (2004) Trans-Tenon's retrobulbar triamcinolone infusion for small choroidal neovascularisation. Br J Ophthalmol 88:1097–1098, doi:10.1136/bjo.2003.039719

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We would like to thank Dr. Alexa Klettner for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoko Miura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miura, Y., Roider, J. Triamcinolone acetonide prevents oxidative stress-induced tight junction disruption of retinal pigment epithelial cells. Graefes Arch Clin Exp Ophthalmol 247, 641–649 (2009). https://doi.org/10.1007/s00417-009-1041-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-009-1041-6

Keywords

Navigation