Skip to main content

Advertisement

Log in

Macular autofluorescence in eyes with cystoid macula edema, detected with 488 nm-excitation but not with 580 nm-excitation

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Fundus autofluorescence (AF) derives from lipofuscin in the retinal pigment epithelium (RPE). Because lipofuscin is a by-product of phagocytosis of photoreceptors by RPE, AF imaging is expected to describe some functional aspect of the retina. In this study we report distribution of AF in patients showing macular edema.

Methods

Three eyes with diabetic macular edema (DME) and 11 with retinal vein occlusion (RVO), associated with macular edema (ME) were examined. ME was determined by standard fundus examination, fluorescein angiography (FA) and optical coherence tomography (OCT). AF was recorded using a Heidelberg confocal scanning laser ophthalmoscope (cSLO) with 488 nm laser exciter (488 nm-AF), and a conventional Topcon fundus camera with halogen lamp exciter and 580 nm band-pass filter (580 nm-AF). Color fundus picture, FA image and these two AF images were analyzed by superimposing all images.

Results

All subjects presented cystoid macular edema (CME) with petaloid pattern hyperfluorescence in FA. In 488 nm-AF, all eyes (100%) showed macular autofluorescence of a similar shape to that of the CME in FA. In contrast, in 580 nm-AF only one eye (7%) presented this corresponding petaloid-shaped autofluorescence. In all cases, peripheral retinal edemas did not show autofluorescence corresponding to the leakage in FA.

Conclusions

In eyes with CME, analogous hyperautofluorescence to the CME was always observed in 488 nm-AF, while it was rarely observed in 580 nm-AF. Moreover, this CME hyperautofluorescence was only seen in the macular area. We hypothesize that autofluorescence from CME may be considered as a “pseudo” or “relative” autofluorescence, due to macular stretching following CME that may result in lateral displacement of macular pigments (MPs) and subsequent reduction of MPs density, as MPs block 488 nm-AF more intensely than 580 nm-AF. Although this phenomenon may not directly indicate change of RPE function, it may be used as a method to assess or track CME non-invasively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. von Ruckmann A, Fitzke FW, Bird AC (1995) Distribution of fundus autofluorescence with a scanning laser ophthalmoscope. Br J Ophthalmol 79(5):407–412, doi:10.1136/bjo.79.5.407

    Article  Google Scholar 

  2. Lois N, Halfyard AS, Bird AC, Fitzke FW (2000) Quantitative evaluation of fundus autofluorescence imaged “in vivo” in eyes with retinal disease. Br J Ophthalmol 84(7):741–745, doi:10.1136/bjo.84.7.741

    Article  PubMed  CAS  Google Scholar 

  3. Lois N, Halfyard AS, Bunce C, Bird AC, Fitzke FW (1999) Reproducibility of fundus autofluorescence measurements obtained using a confocal scanning laser ophthalmoscope. Br J Ophthalmol 83(3):276–279, doi:10.1136/bjo.83.3.276

    Article  PubMed  CAS  Google Scholar 

  4. Lois N, Owens SL, Coco R, Hopkins J, Fitzke FW, Bird AC (2002) Fundus autofluorescence in patients with age-related macular degeneration and high risk of visual loss. Am J Ophthalmol 133:341–349, doi:10.1016/S0002-9394(01)01404-0

    Article  PubMed  Google Scholar 

  5. Spaide RF (2003) Fundus autofluorescence and age-related macular degeneration. Ophthalmology 110(2):392–399, doi:10.1016/S0161-6420(02)01756-6

    Article  PubMed  Google Scholar 

  6. von Ruckmann A, Fitzke FW, Fan J, Halfyard A, Bird AC (2002) Abnormalities of fundus autofluorescence in central serous retinopathy. Am J Ophthalmol 133(6):780–786, doi:10.1016/S0002-9394(02)01428-9

    Article  Google Scholar 

  7. Bessho K, Rodanant N, Bartsch DU, Cheng L, Koh HJ, Freeman WR (2005) Effect of subthreshold infrared laser treatment for drusen regression on macular autofluorescence in patients with age-related macular degeneration. Retina 25(8):981–988, doi:10.1097/00006982-200512000-00005

    Article  PubMed  Google Scholar 

  8. Solbach U, Keilhauer C, Knabben H, Wolf S (1997) Imaging of retinal autofluorescence in patients with age-related macular degeneration. Retina 17(5):385–389

    PubMed  CAS  Google Scholar 

  9. Gerth C, Andrassi-Darida M, Bock M, Preising MN, Weber BH, Lorenz B (2002) Phenotypes of 16 Stargardt macular dystrophy/fundus flavimaculatus patients with known ABCA4 mutations and evaluation of genotype-phenotype correlation. Graefes Arch Clin Exp Ophthalmol 240(8):628–638, doi:10.1007/s00417-002-0502-y

    Article  PubMed  Google Scholar 

  10. Framme C, Roider J (2001) Fundus autofluorescence in macular hole surgery. Ophthalmic Surg Lasers 32(5):383–390

    PubMed  CAS  Google Scholar 

  11. Delori FC, Dorey CK, Staurenghi G, Arend O, Goger DG, Weiter JJ (1995) In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. Invest Ophthalmol Vis Sci 36(3):718–729

    PubMed  CAS  Google Scholar 

  12. Delori FC, Fleckner MR, Goger DG, Weiter JJ, Dorey CK (2000) Autofluorescence distribution associated with drusen in age-related macular degeneration. Invest Ophthalmol Vis Sci 41(2):496–504

    PubMed  CAS  Google Scholar 

  13. Delori FC, Goger DG, Dorey CK (2001) Age-related accumulation and spatial distribution of lipofuscin in RPE of normal subjects. Invest Ophthalmol Vis Sci 42(8):1855–1866

    PubMed  CAS  Google Scholar 

  14. Gass JD (1973) Drusen and disciform macular detachment and degeneration. Arch Ophthalmol 90(3):206–217

    PubMed  CAS  Google Scholar 

  15. Katz ML, Robison WG Jr (2002) What is lipofuscin? Defining characteristics and differentiation from other autofluorescent lysosomal storage bodies. Arch Gerontol Geriatr 34(3):169–184, doi:10.1016/S0167-4943(02)00005-5

    Article  PubMed  CAS  Google Scholar 

  16. Bindewald A, Bird AC, Dandekar SS, Dolar-Szczasny J, Dreyhaupt J, Fitzke FW, Einbock W, Holz FG, Jorzik JJ, Keilhauer C, Lois N, Mlynski J, Pauleikhoff D, Staurenghi G, Wolf S (2005) Classification of fundus autofluorescence patterns in early age-related macular disease. Invest Ophthalmol Vis Sci 46(9):3309–3314, doi:10.1167/iovs.04-0430

    Article  PubMed  Google Scholar 

  17. Framme C, Schule G, Birngruber R, Roider J, Schutt F, Kopitz J, Holz FG, Brinkmann R (2004) Temperature dependent fluorescence of A2-E, the main fluorescent lipofuscin component in the RPE. Curr Eye Res 29(4–5):287–291, doi:10.1080/02713680490516846

    Article  PubMed  CAS  Google Scholar 

  18. Fishkin N, Jang YP, Itagaki Y, Sparrow JR, Nakanishi K (2003) A2-rhodopsin: a new fluorophore isolated from photoreceptor outer segments. Org Biomol Chem 1(7):1101–1105, doi:10.1039/b212213h

    Article  PubMed  CAS  Google Scholar 

  19. Wustemeyer H, Jahn C, Nestler A, Barth T, Wolf S (2002) A new instrument for the quantification of macular pigment density: first results in patients with AMD and healthy subjects. Graefes Arch Clin Exp Ophthalmol 240(8):666–671, doi:10.1007/s00417-002-0515-6

    Article  PubMed  Google Scholar 

  20. Delori FC, Goger DG, Hammond BR, Snodderly DM, Burns SA (2001) Macular pigment density measured by autofluorescence spectrometry: comparison with reflectometry and heterochromatic flicker photometry. J Opt Soc Am A Opt Image Sci Vis 18(6):1212–1230, doi:10.1364/JOSAA.18.001212

    Article  PubMed  CAS  Google Scholar 

  21. Hammer M, Königsdörffer E, Liebermann C, Framme C, Schuch G, Schweitzer D, Strobel J (2008) Ocular fundus auto-fluorescence observations at different wavelengths in patients with age-related macular degeneration and diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 246(1):105–114, doi:10.1007/s00417-007-0639-9

    Article  PubMed  Google Scholar 

  22. Marmorstein AD, Marmorstein LY, Sakaguchi H, Hollyfield JG (2002) Spectral profiling of autofluorescence associated with lipofuscin, Bruch’s Membrane, and sub-RPE deposits in normal and AMD eyes. Invest Ophthalmol Vis Sci 43(7):2435–2441

    PubMed  Google Scholar 

  23. Bringmann A, Reichenbach A, Wiedemann P (2004) Pathomechanisms of cystoid macular edema. Ophthalmic Res 36(5):241–249, doi:10.1159/000081203

    Article  PubMed  Google Scholar 

  24. Otani T, Kishi S, Maruyama Y (1999) Patterns of diabetic macular edema with optical coherence tomography. Am J Ophthalmol 127(6):688–693, doi:10.1016/S0002-9394(99)00033-1

    Article  PubMed  CAS  Google Scholar 

  25. McBain VA, Forrester JV, Lois N (2008) Fundus autofluorescence in the diagnosis of cystoid macular oedema. Br J Ophthalmol 92(7):946–949, doi:10.1136/bjo.2007.129957

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumi Gomi.

Additional information

No author has financial relationship for this research.

Kenichiro Bessho and Fumi Gomi have full control of all primary data. The authors agree to allow Graefe’s Archive for Clinical and Experimental Ophthalmology to review their data upon request.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bessho, K., Gomi, F., Harino, S. et al. Macular autofluorescence in eyes with cystoid macula edema, detected with 488 nm-excitation but not with 580 nm-excitation. Graefes Arch Clin Exp Ophthalmol 247, 729–734 (2009). https://doi.org/10.1007/s00417-008-1033-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-008-1033-y

Keywords

Navigation