Skip to main content

Advertisement

Log in

Effects of bone-marrow mesenchymal stem cells transplanted into vitreous cavity of rat injured by ischemia/reperfusion

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Objective

To examine the survival, migration, integration, differentiation and the expression of various neurotrophic factors of bone-marrow mesenchymal stem cells (BMSCs) transplanted into the vitreous cavity of rats injured by ischemia/reperfusion(I/R).

Methods

The BMSCs were separated from rat marrow using the wall-sticking method, and cultured in vitro to expand. Flow cytometry detected the surface antigens of BMSCs. Ninety-six rats were randomly divided into four groups: normal control injected PBS(C+P),normal control injected BMSCs (C+B), ischemic/reperfusion injected PBS(I/R+P)and ischemic/reperfusion injected BMSCs(I/R+B). After retinal I/R injury was induced in each group by increasing intraocular pressure, 10 µl PBS and BMSC suspensions labeled by red fluorescence CM-Dil were immediately injected into the vitreous cavity. We observed the survival, migration and integration of BMSCs using confocal microscopy. The differentiation and expression of basic fibroblast growth factor (bFGF), brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF) of CM-Dil-labeled BMSCs were detected by immunofluorescent labeling and reserved by confocal microscopy. The expression of mRNA and proteins of bFGF, BDNF and CNTF were assayed by RT-PCR and Western Blot respectively.

Results

After transplantation to normal eyes, BMSCs labeled by CM-Dil were mostly present in the vitreous cavity, and did not migrate. After transplantation to I/R eyes, BMSCs labeled by CM-Dil were mostly present along with the inner limiting membrane. Only a few cells were integrated into the ganglion cell layer. Two or 4 weeks after transplantation, a few BMSCs labeled by CM-Dil were observed to express markers of neuron- neurone specific enolase (NSE), neurofilament (NF) and various neurotrophic factors. The BMSC-injected I/R model eyes showed less reduction in the number of RGCs than that of the I/R eyes with PBS injection.

Conclusions

BMSC transplantation is a valuable neuroprotection tool for the treatment of retina and optic nerve diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hood DC, Greenstein V, Frishman L et al (1999) Identifying inner retinal contributions to the human multifocal ERG. Vision Res 39:2285–2291, doi:10.1016/S0042-6989(98)00296-X

    Article  PubMed  CAS  Google Scholar 

  2. Palmowski AM, Sutter EE, Bearse MA Jr, Fung W (1997) Mapping of retinal function in diabetic retinopathy using the multifocal electroretinogram. Invest Ophthalmol Vis Sci 38:2586–2596

    PubMed  CAS  Google Scholar 

  3. Nishida A, Takahashi M, Tanihara H et al (2000) Incorporation and differentiation of hippocampus-derived neural stem cells transplanted in injured adult rat retina. Invest Ophthalmol Vis Sci 41:4268–4274

    PubMed  CAS  Google Scholar 

  4. Takahashi M, Palmer TD, Takahashi J, Gage FH (1998) Widespread integrationand survival of adult-derived neural progenitor cells in the developing optic retina. Mol Cell Neurosci 12:340–348, doi:10.1006/mcne.1998.0721

    Article  PubMed  CAS  Google Scholar 

  5. Kurimoto Y, Shibuki H, Kaneko Y, Ichikawa M, Kurokawa T, Takahashi M, Yoshimura N (2001) Transplantation of adult rat hippocampus-derived neural stem cells into retina injured by transient ischemia. Neurosci Lett 306:57–60, doi:10.1016/S0304-3940(01)01857-2

    Article  PubMed  CAS  Google Scholar 

  6. Guo Y, Saloupis P, Shaw SJ, Rickman DW (2003) Engraftment of adult neural progenitor cells transplanted to rat retina injured by transient Ischemia. Invest Ophthalmol Vis Sci 44:3194–3201, doi:10.1167/iovs.02-0875

    Article  PubMed  Google Scholar 

  7. Munoz-Elias G, Woodbury D, Black IB (2003) Marrow stromal cells, mitosis, and neuronal differentiation: stem cell and precursor functions. Stem Cells 21:437–448, doi:10.1634/stemcells.21-4-437

    Article  PubMed  Google Scholar 

  8. Van Hoffelen SJ, Young MJ, Shatos MA, Sakaguchi DS (2003) Incorporation of murine brain progenitor cells into the developing mammalian retina. Invest Ophthalmol Vis Sci 44:426–434, doi:10.1167/iovs.02-0269

    Article  PubMed  Google Scholar 

  9. Grozdanic SD, Ast AM, Lazic T, Kwon YH, Kardon RH, Sonea IM, Sakaguchi DS (2006) Morphological integration and functional assessment of transplanted neural progenitor cells in healthy and acute ischemic rat eyes. Exp Eye Res 82:597–607, doi:10.1016/j.exer.2005.08.020

    Article  PubMed  CAS  Google Scholar 

  10. Tomita M, Adachi Y, Yamada H, Takahashi K, Kiuchi K, Oyaizu H, Ikebukuro K, Kaneda H, Matsumura M, Ikehara S (2002) Bone marrow-derived stem cells can differentiate into retinal cells in injured rat retina. Stem Cells 20:279–283, doi:10.1634/stemcells.20-4-279

    Article  PubMed  CAS  Google Scholar 

  11. Kicic A, Shen WY, Wilson AS, Constable IJ, Robertson T, Rakoczy PE (2003) Differentiation of marrow stromal cells into photoreceptors in the rat eye. J Neurosci 23:7742–7749

    PubMed  CAS  Google Scholar 

  12. Klassen HJ, Ng TF, Kurimoto Y, Kirov I, Shatos M, Coffey P, Young MJ (2004) Multipotent retinal progenitors express developmental markers, differentiate into retinal neurons, and preserve light-mediated behavior. Invest Ophthalmol Vis Sci 45:4167–4173, doi:10.1167/iovs.04-0511

    Article  PubMed  Google Scholar 

  13. Chacko DM, Rogers JA, Turner JE, Ahmad I (2000) Survival and differentiation of cultured retinal progenitors transplanted in the subretinal space of the rat. Biochem Biophys Res Commun 268:842–846, doi:10.1006/bbrc.2000.2153

    Article  PubMed  CAS  Google Scholar 

  14. Pressmar S, Ader M, Richard G, Schachner M, Bartsch U (2001) The fate of heterotopically grafted neural precursor cells in the normal and dystrophic adult mouse retina. Invest Ophthalmol Vis Sci 42:3311–3319

    PubMed  CAS  Google Scholar 

  15. Tomita M, Mori T, Maruyama K et al (2006) A comparison of neural differentiation and retinal transplantation with bone marrow-derived cells and retinal progenitor cells. Stem Cells 24:2270–2278, doi:10.1634/stemcells.2005-0507

    Article  PubMed  CAS  Google Scholar 

  16. Dennis JE, Charbord P (2002) Origin and differentiation of human and murine stroma. Stem Cells 20:205–214, doi:10.1634/stemcells.20-3-205

    Article  PubMed  CAS  Google Scholar 

  17. Woodbury D, Emily JS, Darwin JP et al (2000) Adult rat and human bone marrow stromal cell differentiate into neurons. J Neurosci Res 61:364–370, doi:10.1002/1097-4547(20000815)61:4<364::AID-JNR2>3.0.CO;2-C

    Article  PubMed  CAS  Google Scholar 

  18. Sanchez RJ, Song S, Cardozo PF et al (2000) Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 164:247–256, doi:10.1006/exnr.2000.7389

    Article  CAS  Google Scholar 

  19. Deng W, Obrocka M, Fischer I et al (2001) In vitro differentiation of human marrow stromal cells into early progenotors of neural cells by conditions that increase intracellular cyclic AMP. Biochem Biophys Res Commun 282:148–152, doi:10.1006/bbrc.2001.4570

    Article  PubMed  CAS  Google Scholar 

  20. Kopen GC, Prockop DJ, Phinney DG (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA 96:10711–10716, doi:10.1073/pnas.96.19.10711

    Article  PubMed  CAS  Google Scholar 

  21. Azizi SA, Stokes D, Augelli BJ, DiGirolamo C, Prockop DJ (1998) Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats — Similarities to astrocyte grafts. Proc Natl Acad Sci USA 95:3908–3913, doi:10.1073/pnas.95.7.3908

    Article  PubMed  CAS  Google Scholar 

  22. Yu S, Tanabe T, Dezawa M et al (2006) Effects of bone marrow stromal cell injection in an experimental glaucoma model. Biochem Biophys Res Commun 344:1071–1079, doi:10.1016/j.bbrc.2006.03.231

    Article  PubMed  CAS  Google Scholar 

  23. Sengupta N, Caballero S, Mames RN, Butler JM, Scott EW, Grant MB (2003) The role of adult bone marrow-derived stem cells in choroidal neovascularization. Invest Ophthalmol Vis Sci 44:4908–4913, doi:10.1167/iovs.03-0342

    Article  PubMed  Google Scholar 

  24. Labouyrie E, Dubus P, Groppi A, Mahon FX, Ferrer J, Parrens M, Reiffers J, de Mascarel A, Merlio JP (1999) Expression of neurotrophins and their receptors in human bone marrow. Am J Pathol 154:405–415

    PubMed  CAS  Google Scholar 

  25. Takai K, Hara J, Matsumoto K, Hosoi G, Osugi Y, Tawa A, Okada S, Nakamura T (1997) Hepatocyte growth factor is constitutively produced by human bone marrow stromal cells and indirectly promotes hematopoiesis. Blood 89:1560–1565

    PubMed  CAS  Google Scholar 

  26. Sensebe L, Deschaseaux M, Li J, Herve P, Charbord P (1997) The broad spectrum of cytokine gene expression by myoid cells from the human marrow microenvironment. Stem Cells 15:133–143

    Article  PubMed  CAS  Google Scholar 

  27. Ye M, Chen S, Wang X, Qi C, Lu G, Liang L, Xu J (2005) Glial cell line-derived neurotrophic factor in bone marrow stromal cells of rat. Neuroreport 16:581–584, doi:10.1097/00001756-200504250-00013

    Article  PubMed  CAS  Google Scholar 

  28. Wislet-Gendebien S, Bruyere F, Hans G, Leprince P, Moonen G, Rogister B (2004) Nestin-positive mesenchymal stem cells favour the astroglial lineage in neural progenitors and stem cells by releasing active BMP4. BMC Neurosci 5:33, doi:10.1186/1471-2202-5-33

    Article  PubMed  CAS  Google Scholar 

  29. Kinnaird T, Stabile E, Burnett MS, Shou M, Lee CW, Barr S, Fuchs S, Epstein SE (2004) Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109:1543–1549, doi:10.1161/01.CIR.0000124062.31102.57

    Article  PubMed  CAS  Google Scholar 

  30. Dezawa M, Kanno H, Hoshino M, Cho H, Matsumoto N, Itokazu Y, Tajima N, Yamada H, Sawada H, Ishikawa H, Mimura T, Kitada M, Suzuki Y, Ide C (2004) Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest 113:1701–1710

    PubMed  CAS  Google Scholar 

  31. Nickells RW (1999) Apoptosis of retinal ganglion cells in glaucoma: an up of the molecular pathways involved in cell death. Surv Ophthalmol 43:151–161, doi:10.1016/S0039-6257(99)00029-6

    Article  Google Scholar 

  32. Kerrigan LA, Zack DJ, Quigley HA, Smith SD, Pease ME (1997) TUNEL-positive ganglion cells in human primary open-angle glaucoma. Arch Ophthalmol 115:1031–1035

    PubMed  CAS  Google Scholar 

  33. Nickells RW, Zack DJ (1996) Apoptosis in ocular disease: a molecular overview. Ophthalmic Genet 17:145–165, doi:10.3109/13816819609057889

    Article  PubMed  CAS  Google Scholar 

  34. Lam TT, Abler AS, Tso M (1999) Apoptosis and caspases after ischemia reperfusion injury in rat retina. Invest Ophthalmol Vis Sci 40:967–975

    PubMed  CAS  Google Scholar 

  35. Honda Y (1996) Celluar and molecular biology of ischemia retina. Nippon Ganka Gakkai Zasshi 100:937–955

    PubMed  CAS  Google Scholar 

  36. Hangai M, Yoshimura N, Yoshida M, Yabuuchi K, Honda Y (1995) Interleukin-1 gene expression in transient retinal ischemia in the rat. Invest Ophthalmol Vis Sci 36:571–578

    PubMed  CAS  Google Scholar 

  37. Hangai M, Yoshimum N, Honda Y (1996) Increased cytokine gene expression in rat retina following transient ischemia. Ophthalmic Res 28:248–254

    Article  PubMed  CAS  Google Scholar 

  38. Cui Q, Lu Q, So KF, Yip HK (1999) CNTF, not other trophic factors, promotes axonal regeneration of axotomized retinal ganglion cells in adult hamsters. Invest Ophthalmol Vis Sci 40:760–766

    PubMed  CAS  Google Scholar 

  39. Sapieha PS, Peltier M, Rendahl KG, Manning WC, Di Polo A (2003) Fibroblast growth factor-2 gene delivery stimulates axon growth by adult retinal ganglion cells after acute optic nerve injury. Mol Cell Neurosci 24:656–672, doi:10.1016/S1044-7431(03)00228-8

    Article  PubMed  CAS  Google Scholar 

  40. Schuettauf F, Vorwerk C, Naskar R, Orlin A, Quinto K, Zurakowski D, Dejneka NS, Klein RL, Meyer EM, Bennett J (2004) Adeno-associated viruses containing bFGF or BDNF are neuroprotective against excitotoxicity. Curr Eye Res 29:379–386, doi:10.1080/02713680490517872

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Xiao-rong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Na, L., Xiao-rong, L. & Jia-qin, Y. Effects of bone-marrow mesenchymal stem cells transplanted into vitreous cavity of rat injured by ischemia/reperfusion. Graefes Arch Clin Exp Ophthalmol 247, 503–514 (2009). https://doi.org/10.1007/s00417-008-1009-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-008-1009-y

Keywords

Navigation