Skip to main content

Advertisement

Log in

Intrinsic tissue fluorescence in an organotypic perfusion culture of the porcine ocular fundus exposed to blue light and free radicals

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

A wide variety of pathological pathways may result in age-related macular degeneration. Because of its complexity, there is no comprehensive model of the disease yet. One key feature is the accumulation of the autofluorescent pigment lipofuscin in the retinal pigment epithelium (RPE). Thus, we developed an organotypic perfusion culture model of the porcine ocular fundus, generating lipofuscin under exposure to blue light and hydrogen peroxide.

Methods

Porcine fundi (choroid, Bruch’s membrane, RPE, and retina) were explanted in toto, transferred into a perfusion culture chamber, perfused with cell culture medium and kept at 37°C. Free radical stress was induced by supplementation of H2O2, and/or the specimens were exposed to blue light, or kept untreated as controls. After a culture period of 7 days, the specimens were subject to microscopic inspection, histology, fluorescence microscopy, and measurement of fluorescence spectra as well as fluorescence decay times.

Results

Histology showed atrophic ganglion cells and rod outer segments. All other tissue structures were morphologically intact. Compared to the controls, RPE and retina exposed to light showed increased fluorescence, which was shifted towards shorter wavelengths. The fluorescence spectra and decays resembled that of lipofuscin granules isolated from human donor eyes. HPLC analysis revealed the abundance of the lipofuscin component N-retinylidene-N-retinylethanolamine (A2E), its precursor products, as well as two new, green-emitting fluorophores.

Conclusions

Porcine ocular fundi were successfully preserved in an organotypic perfusion culture for 7 days, and exhibited remarkable autofluorescence after light and free radical exposure, making the model suitable for investigations of lipofuscinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ambati J, Anand A, Fernandez S, Sakurai E, Lynn BC, Kuziel WA, Rollins BJ, Ambati BK (2003) An animal model of age-related macular degeneration in senescent Ccl-2- or Ccr-2-deficient mice. Nat Med 9:1390–1397

    Article  PubMed  CAS  Google Scholar 

  2. Armstrong D, Santangelo G, Connole E (1981) The distribution of peroxide regulating enzymes in the canine eye. Curr Eye Res 1:225–242

    Article  PubMed  CAS  Google Scholar 

  3. Bindewald A, Bird AC, Dandekar SS, Dolar-Szczasny J, Dreyhaupt J, Fitzke FW, Einbock W, Holz FG, Jorzik JJ, Keilhauer C, Lois N, Mlynski J, Pauleikhoff D, Staurenghi G, Wolf S (2005) Classification of fundus autofluorescence patterns in early age-related macular disease. Invest Ophthalmol Vis Sci 46:3309–3314

    Article  PubMed  Google Scholar 

  4. Bindewald-Wittich A, Han M, Schmitz-Valckenberg S, Snyder SR, Giese G, Bille JF, Holz FG (2006) Two-photon-excited fluorescence imaging of human RPE cells with a femtosecond Ti:Sapphire laser. Invest Ophthalmol Vis Sci 47:4553–4557

    Article  PubMed  Google Scholar 

  5. Choudhary S, Xiao T, Srivastava S, Zhang W, Chan LL, Vergara LA, Van Kuijk FJ, Ansari NH (2005) Toxicity and detoxification of lipid-derived aldehydes in cultured retinal pigmented epithelial cells. Toxicol Appl Pharmacol 204:122–134

    Article  PubMed  CAS  Google Scholar 

  6. Cringle SJ, Yu DY (2004) Intraretinal oxygenation and oxygen consumption in the rabbit during systemic hyperoxia. Invest Ophthalmol Vis Sci 45:3223–3228

    Article  PubMed  Google Scholar 

  7. Dargel R (1992) Lipid peroxidation—a common pathogenetic mechanism? Exp Toxicol Pathol 44:169–181

    PubMed  CAS  Google Scholar 

  8. Delori FC (1994) Spectrometer for noninvasive measurement of intrinsic fluorescence and reflectance of ocular fundus. Applied Optics 33:7439–7452

    Google Scholar 

  9. Delori FC, Dorey KC, Staurenghi G, Arend O, Goger DC, Weiter JJ (1995) In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. Invest Ophthalmol 36:718–729

    CAS  Google Scholar 

  10. Ebrahem Q, Renganathan K, Sears J, Vasanji A, Gu X, Lu L, Salomon RG, Crabb JW, Anand-Apte B (2006) Carboxyethylpyrrole oxidative protein modifications stimulate neovascularization: Implications for age-related macular degeneration. Proc Natl Acad Sci USA 103:13480–13484

    Article  PubMed  CAS  Google Scholar 

  11. Einbock W, Moessner A, Schnurrbusch UE, Holz FG, Wolf S (2005) Changes in fundus autofluorescence in patients with age-related maculopathy. Correlation to visual function: a prospective study. Graefes Arch Clin Exp Ophthalmol 243:300–305

    Article  PubMed  Google Scholar 

  12. Eldred GE, Lasky MR (1993) Retinal age-pigments generated by self-assembling lysomorphotropic detergents. Nature 361:724–726

    Article  PubMed  CAS  Google Scholar 

  13. Feeney-Burns L, Berman ER, Rothman H (1980) Lipofuscin of human retinal pigment epithelium. Am J Ophthalmol 90:783–791

    PubMed  CAS  Google Scholar 

  14. Gu X, Meer SG, Miyagi M, Rayborn ME, Hollyfield JG, Crabb JW, Salomon RG (2003) Carboxyethylpyrrole protein adducts and autoantibodies, biomarkers for age-related macular degeneration. J Biol Chem 278:42027–42035

    Article  PubMed  CAS  Google Scholar 

  15. Hammer M, Richter S, Guehrs KH, Schweitzer D (2006) Retinal pigment epithelium cell damage by A2-E and its photo-derivatives. Mol Vis 12:1348–1354

    PubMed  CAS  Google Scholar 

  16. Haralampus-Grynaviski NM, Lamb LE, Clancy CM, Skumatz C, Burke JM, Sarna T, Simon JD (2003) Spectroscopic and morphological studies of human retinal lipofuscin granules. Proc Natl Acad Sci USA 100:3179–3184

    Article  PubMed  CAS  Google Scholar 

  17. Haralampus-Grynaviski NM, Lamb LE, Simon JD, Krogmeier JR, Dunn RC, Pawlak A, Rozanowska M, Sarna T, Burke JM (2001) Probing the spatial dependence of the emission spectrum of single human retinal lipofuscin granules using near-field scanning optical microscopy. Photochem Photobiol 74:364–368

    Article  PubMed  CAS  Google Scholar 

  18. Holz FG, Bellman C, Staudt S, Schutt F, Volcker HE (2001) Fundus autofluorescence and development of geographic atrophy in age- related macular degeneration. Invest Ophthalmol Vis Sci 42:1051–1056

    PubMed  CAS  Google Scholar 

  19. Hussain AA, Starita C, Marshall J (2003) Transport characteristics of ageing Bruch’s Membrane: Implications for age-related macular degeneration. In: Ioseliani OR (ed) Focus on macular degeneration research. Nova Biomedical Books, New York, pp 59–113

    Google Scholar 

  20. Jang YP, Matsuda H, Itagaki Y, Nakanishi K, Sparrow JR (2005) Characterization of peroxy-A2E and furan-A2E photooxidation products and detection in human and mouse retinal pigment epithelial cell lipofuscin. J Biol Chem 280:39732–39739

    Article  PubMed  CAS  Google Scholar 

  21. Katz ML, Wendt KD, Sanders DN (2005) RPE65 gene mutation prevents development of autofluorescence in retinal pigment epithelial phagosomes. Mech Ageing Dev 126:513–521

    Article  PubMed  CAS  Google Scholar 

  22. Kobuch K, Herrmann AW, Framme C, Sachs HG, Gabel VP, Hillenkamp J (2008) Maintenance of adult porcine retina and retinal pigment epithelium in perfusion culture: characterisation of an organotypic in-vitro model. Exp Eye Res. DOI 10.1016/j.exer.2008.01.011

  23. Kopitz J, Holz FG, Kaemmerer E, Schutt F (2004) Lipids and lipid peroxidation products in the pathogenesis of age-related macular degeneration. Biochimie 86:825–831

    Article  PubMed  CAS  Google Scholar 

  24. Machlin LJ, Bendich A (1987) Free radical tissue damage: protective role of antioxidant nutrients. FASEB J 1:441–445

    PubMed  CAS  Google Scholar 

  25. Marmorstein AD, Marmorstein LY, Sakaguchi H, Hollyfield JG (2002) Spectral profiling of autofluorescence associated with lipofuscin, Bruch’s Membrane, and sub-RPE deposits in normal and AMD eyes. Invest Ophthalmol Vis Sci 43:2435–2441

    PubMed  Google Scholar 

  26. Mata NL, Moghrabi WN, Lee JS, Bui TV, Radu RA, Horwitz J, Travis GH (2004) Rpe65 is a retinyl ester binding protein that presents insoluble substrate to the isomerase in retinal pigment epithelial cells. J Biol Chem 279:635–643

    Article  PubMed  CAS  Google Scholar 

  27. Mata NL, Tzekov RT, Liu X, Weng J, Birch DG, Travis GH (2001) Delayed dark-adaptation and lipofuscin accumulation in abcr  /- mice: implications for involvement of ABCR in age-related macular degeneration. Invest Ophthalmol Vis Sci 42:1685–1690

    PubMed  CAS  Google Scholar 

  28. Nilsson SE, Sundelin SP, Wihlmark U, Brunk UT (2003) Aging of cultured retinal pigment epithelial cells: oxidative reactions, lipofuscin formation and blue light damage. Doc Ophthalmol 106:13–16

    Article  PubMed  Google Scholar 

  29. Parish CA, Hashimoto M, Nakanishi K, Dillon J, Sparrow J (1998) Isolation and one step preparation of A2-E and iso-A2-E fluorophores from human retinal pigment epithelium. Proc Natl Acad Sci USA 95:14609–14613

    Article  PubMed  CAS  Google Scholar 

  30. Prince JH, Diesem CD, Eglitis I, Ruskell GL (1965) Anatomy and histology of the eye and orbit in domestic animals. Charles C. Thomas, Springfield

    Google Scholar 

  31. Radu RA, Mata NL, Bagla A, Travis GH (2004) Light exposure stimulates formation of A2E oxiranes in a mouse model of Stargardt’s macular degeneration. Proc Natl Acad Sci USA 101:5928–5933

    Article  PubMed  CAS  Google Scholar 

  32. Radu RA, Mata NL, Nusinowitz S, Liu X, Travis GH (2004) Isotretinoin treatment inhibits lipofuscin accumulation in a mouse model of recessive Stargardt’s macular degeneration. Novartis Found Symp 255:51–63, discussion 63–7, 177–8

    Article  PubMed  Google Scholar 

  33. Rozanowska M, Pawlak A, Rozanowski B, Skumatz C, Zareba M, Boulton ME, Burke JM, Sarna T, Simon JD (2004) Age-related changes in the photoreactivity of retinal lipofuscin granules: role of chloroform-insoluble components. Invest Ophthalmol Vis Sci 45:1052–1060

    Article  PubMed  Google Scholar 

  34. Schütt F, Bergmann M, Holz FG, Kopitz J (2003) Proteins modified by Malondialdehyde, 4-Hydroxynonenal, or advanced glycation end products in Lipofuscin of human retinal pigment epithelium. Invest Ophthalmol Vis Sci 44:3663–3668

    Article  PubMed  Google Scholar 

  35. Schweitzer D, Hammer M, Schweitzer F, Anders R, Doebbecke T, Schenke S, Gaillard ER (2004) In vivo measurement of time-resolved autofluorescence at the human fundus. J Biomed Opt 9:1214–1222

    Article  PubMed  Google Scholar 

  36. Spaide RF, Ho-Spaide WC, Browne RW, Armstrong D (1999) Characterization of peroxidized lipids in Bruch’s membrane. Retina 19:141–147

    Article  PubMed  CAS  Google Scholar 

  37. Sparrow JR, Boulton M (2005) RPE lipofuscin and its role in retinal pathobiology. Exp Eye Res 80:595–606

    Article  PubMed  CAS  Google Scholar 

  38. Sparrow JR, Parish CA, Hashimoto M, Nakanishi K (1999) A2E, a Lipofuscin fluorophore, in human retinal pigmented epithelial cells in culture. Invest Ophthalmol Vis Sci 40:2988–2995

    PubMed  CAS  Google Scholar 

  39. Starita C, Hussain AA, Pagliarini S, Marshall J (1996) Hydrodynamics of ageing Bruch’s membrane: implications for macular disease. Exp Eye Res 62:565–572

    Article  PubMed  CAS  Google Scholar 

  40. Strehl R, Schumacher K, Minuth WW (2004) Controlled respiratory gas delivery to embryonic renal epithelial explants in perfusion culture. Tissue Eng 10:1196–1203

    PubMed  CAS  Google Scholar 

  41. Sundelin SP, Nilsson SE, Brunk UT (2001) Lipofuscin-formation in cultured retinal pigment epithelial cells is related to their melanin content. Free Radic Biol Med 30:74–81

    Article  PubMed  CAS  Google Scholar 

  42. von Rückmann A, Fitzke FW, Bird AC (1995) Distribution of fundus autofluorescence with a scanning laser ophthalmoscope. Brit J Ophthalmol 79:407–412

    Article  Google Scholar 

  43. von Rückmann A, Fitzke FW, Bird AC (1997) Fundus autofluorescence in age-related macular disease imaged with a laser scanning ophthalmoscope. Invest Ophthalmol Vis Sci 38:478–486

    Google Scholar 

  44. Wassell J, Ellis S, Burke J, Boulton M (1998) Fluorescence properties of autofluorescent granules generated by cultured human RPE cells. Invest Ophthalmol Vis Sci 39:1487–1492

    PubMed  CAS  Google Scholar 

  45. Wihlmark U, Wrigstad A, Roberg K, Nilsson SE, Brunk UT (1997) Lipofuscin accumulation in cultured retinal pigment epithelial cells causes enhanced sensitivity to blue light irradiation. Free Radic Biol Med 22:1229–1234

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Ministry of Education and Research under grant No. 01EZ0309. The authors are grateful to Prof. Elizabeth Gaillard from Northern Illinois University for the gift of lipofuscin granules isolated from human donor eyes.

Conflict of interests

Hammer: none, Richter: none, Kobuch: none, Mata: employee of Sirion Therapeutics Inc., Schweitzer: none

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hammer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammer, M., Richter, S., Kobuch, K. et al. Intrinsic tissue fluorescence in an organotypic perfusion culture of the porcine ocular fundus exposed to blue light and free radicals. Graefes Arch Clin Exp Ophthalmol 246, 979–988 (2008). https://doi.org/10.1007/s00417-008-0789-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-008-0789-4

Keywords

Navigation