Skip to main content
Log in

Bacterial adhesion to conventional hydrogel and new silicone-hydrogel contact lens materials

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

As bacterial adhesion to contact lenses may contribute to the pathogenesis of keratitis, the aim of our study was to investigate in vitro adhesion of clinically relevant bacteria to conventional hydrogel (standard HEMA) and silicone-hydrogel contact lenses using a bioluminescent ATP assay.

Methods

Four types of unworn contact lenses (Etafilcon A, Galyfilcon A, Balafilcon A, Lotrafilcon B) were incubated with Staphylococcus epidermidis (two different strains) and Pseudomonas aeruginosa suspended in phosphate buffered saline (PBS). Lenses were placed with the posterior surface facing up and were incubated in the bacterial suspension for 4 hours at 37°C. Bacterial binding was then measured and studied by bioluminescent ATP assay. Six replicate experiments were performed for each lens and strain.

Results

Adhesion of all species of bacteria to standard HEMA contact lenses (Etafilcon A) was found to be significantly lower than that of three types of silicone-hydrogel contact lenses, whereas Lotrafilcon B material showed the highest level of bacterial binding. Differences between species in the overall level of adhesion to the different types of contact lenses were observed. Adhesion of P. aeruginosa was typically at least 20 times greater than that observed with both S. epidermidis strains.

Conclusions

Conventional hydrogel contact lenses exhibit significantly lower bacterial adhesion in vitro than silicone-hydrogel ones. This could be due to the greater hydrophobicity but also to the higher oxygen transmissibility of silicone–hydrogel lenses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Morgan PB, Woods C, Jones D, Efron N, Tan KO, Gonzalez MY, Pesinova A, Grein HJ, Runberg SE, Tranoudis IG, Chandrinos A, Fine P, Montani G, Morani E, Itoi M, Bendoriene J, van der Worp E, Helland M, Phillips G, Belousov V, Barr JT (2007) International contact lens prescribing in 2006. Contact Lens Spectr 22:34–38

    Google Scholar 

  2. Sweeney D (2004) Silicone hydrogels. Continuous-wear contact lenses, 2nd edn. Butterworth-Heinemann, Edinburgh

    Google Scholar 

  3. Kodjikian L, Burillon C, Roques C, Pellon G, Renaud FN, Hartmann D, Freney J (2004) Intraocular lenses, bacterial adhesion and endophthalmitis prevention: a review. Biomed Mater Eng 14:395–409

    PubMed  Google Scholar 

  4. Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464

    Article  PubMed  CAS  Google Scholar 

  5. LeMagrex E, Brisset L, Jacquelin L, Carquin J, Bonnaveiro N (1994) Susceptibility to antibacterials and compared metabolism of suspended bacteria versus embedded bacteria in biofilms. Colloids Surf B Biointerfaces 2:89–95

    Article  CAS  Google Scholar 

  6. Anwar H, Strap JL, Costerton JW (1992) Establishment of aging biofilms: possible mechanism of bacterial resistance to antimicrobial therapy. Antimicrob Agents Chemother 36:1347–1351

    PubMed  CAS  Google Scholar 

  7. Kodjikian L, Burillon C, Roques C, Pellon G, Freney J, Renaud F (2003) Bacterial adherence of Staphylococcus epidermidis to intraocular lenses: a bioluminescence and scanning electron microscopy study. Invest Ophthalmol Vis Sci 44:4388–4394

    Article  PubMed  Google Scholar 

  8. Kodjikian L, Burillon C, Lina G, Roques C, Pellon G, Freney J, Renaud F (2003) Biofilm formation on intraocular lenses by a clinical strain encoding ica locus: a scanning electron microscopy study. Invest Ophthalmol Vis Sci 44:4382–4387

    Article  PubMed  Google Scholar 

  9. Kodjikian L, Renaud F, Roques C, Garweg J, Pellon G, Freney J, Burillon C (2005) In vitro influence of vancomycin on adhesion of a Staphylococcus epidermidis strain encoding ica locus to intraocular lenses. J Cataract Refract Surg 31:1050–1058

    Article  PubMed  Google Scholar 

  10. Burillon C, Kodjikian L, Pellon G, Martra A, Freney J, Renaud FN (2002) In vitro study of bacterial adherence to different types of intraocular lenses. Drug Dev Ind Pharm 28:95–99

    Article  PubMed  CAS  Google Scholar 

  11. Ludwicka A, Jansen B, Wadstrom T, Pulverer G (1984) Attachment of staphylococci to various synthetic polymers. Zentralbl Bakteriol Mikrobiol Hyg [A] 256:479–489

    CAS  Google Scholar 

  12. Sheehan D (2000) Spectroscopic techniques. In physical biochemistry: principles and applications. Wiley, Chichester, pp 61–120

    Google Scholar 

  13. Champiat D (1992) Biochimiluminescence and biotechnology. Le technoscope de Biofutur 51:8

    Google Scholar 

  14. Campbell A (1988) Chemiluminescence: principles and applications in biology and medicine. VCH, Ellis Horwood Ltd., New York, p. 265

    Google Scholar 

  15. Lundberg F, Gouda I, Larm O, Galin MA, Ljungh A (1998) A new model to assess staphylococcal adhesion to intraocular lenses under in vitro flow conditions. Biomaterials 19:1727–1733

    Article  PubMed  CAS  Google Scholar 

  16. Farber BF, Wolff AG (1993) Salicylic acid prevents the adherence of bacteria and yeast to silastic catheters. J Biomed Mater Res 27:599–602

    Article  PubMed  CAS  Google Scholar 

  17. Wahl J, Katz H, Abrams D (1991) Infectious keratitis in Baltimore. Ann Ophthalmol 23:234–237

    PubMed  CAS  Google Scholar 

  18. Sharma S, Gopalakrishnan S, Aasuri M, Garg P, Rao G (2003) Trends in contact lens-associated microbial keratitis in Southern India. Ophthalmology 110:138–143

    Article  PubMed  Google Scholar 

  19. Verhelst D, Koppen C, Looveren JV, Meheus A, Tassignon M (2005) Clinical, epidemiological and cost aspects of contact lens related infectious keratitis in Belgium: results of a seven-year retrospective study. Bull Soc Belge Ophtalmol 297:7–15

    PubMed  Google Scholar 

  20. Ahanotu EN, Hyatt MD, Graham MJ, Ahearn DG (2001) Comparative radiolabel and ATP analyses of adhesion of Pseudomonas aeruginosa and Staphylococcus epidermidis to hydrogel lenses. Clao J 27:89–93

    PubMed  CAS  Google Scholar 

  21. Bruinsma GM, van der Mei HC, Busscher HJ (2001) Bacterial adhesion to surface hydrophilic and hydrophobic contact lenses. Biomaterials 22:3217–3224

    Article  PubMed  CAS  Google Scholar 

  22. George M, Ahearn D, Pierce G, Gabriel M (2003) Interactions of Pseudomonas aeruginosa and Staphylococcus epidermidis in adhesion to a hydrogel. Eye Contact Lens 29:S105–S109 discussion S115–118, S192–S194

    Article  PubMed  Google Scholar 

  23. Henriques M, Sousa C, Lira M, Elisabete M, Oliveira R, Azeredo J (2005) Adhesion of Pseudomonas aeruginosa and Staphylococcus epidermidis to silicone-hydrogel contact lenses. Optom Vis Sci 82:446–450

    Article  PubMed  Google Scholar 

  24. Nicolson PC, Vogt J (2001) Soft contact lens polymers: an evolution. Biomaterials 22:3273–283

    Article  PubMed  CAS  Google Scholar 

  25. Schnider C, Steffen R (2005) New generation of silicon-hydrogel contact lenses for daily wear. Oftalmologia 49:78–81

    PubMed  Google Scholar 

  26. Snyder C (2004) Contact lenses–now, and then. Cont Lens Anterior Eye 27:111–113

    Article  PubMed  Google Scholar 

  27. Pascual A, Fleer A, Westerdaal NA, Verhoef J (1986) Modulation of adherence of coagulase-negative staphylococci to Teflon catheters in vitro. Eur J Clin Microbiol 5:518–522

    Article  PubMed  CAS  Google Scholar 

  28. Ruther P, Vincent R (1980) The adhesion of microorganisms to surfaces, physico–chemical aspects. In: Berkeley RCW, Melling LJJ, Rutter PR, Vincent B (eds) Microbial adhesion to surfaces. Ellis Horwwod, London, pp 79–91

    Google Scholar 

  29. Magnusson KE (1982) Hydrophobic interaction–a mechanism of bacterial binding. Scand J Infect Dis Suppl 33:32–36

    PubMed  CAS  Google Scholar 

  30. Weikart CM, Matsuzawa Y, Winterton L, Yasuda HK (2001) Evaluation of plasma polymer-coated contact lenses by electrochemical impedance spectroscopy. J Biomed Mater Res 54:597–607

    Article  PubMed  CAS  Google Scholar 

  31. Lopez-Alemany A, Compan V, Refojo MF (2002) Porous structure of purevision versus Focus Night&Day and conventional hydrogel contact lenses. J Biomed Mater Res 63:319–325

    Article  PubMed  CAS  Google Scholar 

  32. Jones L, Long J (2002) The impact of contact lens care regimens on the in vitro wettability of conventional and silicone-hydrogel contact lens materials. Invest Ophthalmol Vis Sci: ARVO abstract # 3097

  33. Cheng L, Muller SJ, Radke CJ (2004) Wettability of silicone-hydrogel contact lenses in the presence of tear-film components. Curr Eye Res 28:93–108

    Article  PubMed  Google Scholar 

  34. de Beer D, Stoodley P, Roe F, Lewandowski Z (1994) Effects of biofilm structures on oxygen distribution and mass transport. Biotechnol Bioeng 43:1131–1138

    Article  Google Scholar 

  35. Zhang T, Bishop P (1994) Density, porosity, and pore structure of biofilms. Wat Res 28:2267–2277

    Article  CAS  Google Scholar 

  36. Pitt WG, Ross SA (2003) Ultrasound increases the rate of bacterial cell growth. Biotechnol Prog 19:1038–1044

    Article  PubMed  CAS  Google Scholar 

  37. Madigan MC, Holden BA (1992) Reduced epithelial adhesion after extended contact lens wear correlates with reduced hemidesmosome density in cat cornea. Invest Ophthalmol Vis Sci 33:314–323

    PubMed  CAS  Google Scholar 

  38. Cavanagh HD, Ladage PM, Li SL, Yamamoto K, Molai M, Ren DH, Petroll WM, Jester JV (2002) Effects of daily and overnight wear of a novel hyper oxygen-transmissible soft contact lens on bacterial binding and corneal epithelium: a 13-month clinical trial. Ophthalmology 109:1957–1969

    Article  PubMed  Google Scholar 

  39. Morgan PB, Efron N, Hill EA, Raynor MK, Whiting MA, Tullo AB (2005) Incidence of keratitis of varying severity among contact lens wearers. Br J Ophthalmol 89:430–436

    Article  PubMed  CAS  Google Scholar 

  40. Garcia-Saenz MC, Arias-Puente A, Fresnadillo-Martinez MJ, Paredes-Garcia B (2002) Adherence of two strains of Staphylococcus epidermidis to contact lenses. Cornea 21:511–515

    Article  PubMed  Google Scholar 

  41. Vermeltfoort PB, Rustema-Abbing M, de Vries J, Bruinsma GM, Busscher HJ, van der Linden ML, Hooymans JM, van der Mei HC (2006) Influence of day and night wear on surface properties of silicone hydrogel contact lenses and bacterial adhesion. Cornea 25:516–523

    Article  PubMed  Google Scholar 

  42. Butrus S, Klotz S, Misra R (1987) The adherence of Pseudomonas aeruginosa to soft contact lenses. Ophthalmology 94:1310–1314

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Christine Chaumeil, MD (Microbiology Department of National XV-XX Hospital, Paris, France), who provided one of the Staphylococcus epidermidis strains, and Cecile Bebear, MD (Microbiology Department of Bordeaux Pellegrin University Hospital), who provided the Pseudomonas aeruginosa strain. We thank Sarah Somerville (IARC) for careful English editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Kodjikian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kodjikian, L., Casoli-Bergeron, E., Malet, F. et al. Bacterial adhesion to conventional hydrogel and new silicone-hydrogel contact lens materials. Graefes Arch Clin Exp Ophthalmol 246, 267–273 (2008). https://doi.org/10.1007/s00417-007-0703-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-007-0703-5

Keywords

Navigation