Skip to main content

Advertisement

Log in

Alterations of amino acids and glutamate transport in the DBA/2J mouse retina; possible clues to degeneration

  • Laboratory Investigation
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

The DBA/2J mouse spontaneously develops ocular hypertension and time-dependent progressive retinal ganglion cell (RGC) loss. This study examines changes in amino acid levels in the vitreous, and changes in the expression of retinal glutamate transporters and receptors that occur during the progression of this pathology.

Methods

Retinas were obtained from DBA/2J mice at ages 3, 6 and 11 months. C57BL/6 mice were used as age-matched controls. Vitreal amino acid content was measured with HPLC. Western blotting and immunohistochemistry were performed using specific antibodies against the glutamate transporters (GLAST, GLT-1v, EAAC-1) and glutamate receptors, particularly NMDA (NR1, NR2A, NR2B) and AMPA (GluR1, GluR2/3, GluR4) receptors.

Results

HPLC showed retinal concentrations of glutamate, glutamine, glycine, alanine, lysine, serine, and arginine to be significantly higher in DBA/2J mice at 11 months of age compared to age-matched controls. Western Blots revealed a moderate decrease of GLAST and GLT-1v expression in DBA/2J mice at 6 and 11 months as compared to age-matched controls while there was no change in EAAC1. Immunohistochemically, no changes in expression of NMDA and AMPA receptors were seen.

Conclusion

Alterations of amino acid content and enhanced glutamate neurotransmission might be involved in the pathogenesis of retinal neurodegeneration in the DBA/2J mouse model of ocular hypertension. Moreover, these mice provide an animal model for studying excitotoxic retinal damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Anderson MG, Smith RS, Savinova OV, Hawes NL, Chang B, Zabaleta A, Wilpan R, Heckenlively JR, Davisson M, John SW (2001) Genetic modification of glaucoma associated phenotypes between AKXD-28/Ty and DBA/2J mice. BMC Genet 2(1):1

    Article  PubMed  CAS  Google Scholar 

  2. Armitage P, Berry G, Matthews JNS (2002) Statistical methods in medical research. Blackwell Science, Oxford, pp 156–164

    Google Scholar 

  3. Attwell D, Barbour B, Szatkowski M (1993) Nonvesicular release of neurotransmitter. Neuron 11:401–407

    Article  PubMed  CAS  Google Scholar 

  4. Ayoub G, Copenhagen DR (1991) Application of a fluorometric method to measure glutamate release from single retinal photoreceptors. J Neurosci Methods 37:7–14

    Article  PubMed  CAS  Google Scholar 

  5. Berkelaar M, Clarke DB, Wang YC, Bray GM, Aguayo AJ (1994) Axotomy results in delayed death and apoptosis of retinal ganglion cells in adult rats. J Neurosci 14:4368–4374

    PubMed  CAS  Google Scholar 

  6. Carter-Dawson L, Crawford ML, Harwerth RS, Smith EL, Feldman R, Shen FF, Mitchell CK, Whitetree A (2002) Vitreal glutamate concentration in monkeys with experimental glaucoma. Invest Ophthalmol Vis Sci 43:2633–2637

    PubMed  Google Scholar 

  7. Chang B, Smith RS, Hawes NL, Anderson MG, Zabaleta A, Savinova O, Roderick TH, Heckenlively JR, Davisson MT, John SW (1999) Interacting loci cause severe iris atrophy and glaucoma in DBA/2J mice. Nat Genet 21:405–409

    Article  PubMed  CAS  Google Scholar 

  8. Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:623–634

    Article  PubMed  CAS  Google Scholar 

  9. Dyka FM, May CA, Enz R (2004) Metabotropic glutamate receptors are differentially regulated under elevated intraocular pressure. J Neurochem 90:190–202

    Article  PubMed  CAS  Google Scholar 

  10. Eastwood SL, Burnet PW, Harrison PJ (1997) GluR2 glutamate receptor subunit flip and flop isoforms are decreased in the hippocampal formation in schizophrenia: a reverse transcriptase-polymerase chain reaction (RT-PCR) study. Brain Res Mol Brain Res 44:92–98

    Article  PubMed  CAS  Google Scholar 

  11. Gegelashvili G, Schousboe A (1997) High affinity glutamate transporters: regulation of expression and activity. Mol Pharmacol 52:6–15

    PubMed  CAS  Google Scholar 

  12. Grunder T, Kohler K, Guenther E (2000) Distribution and developmental regulation of AMPA receptor subunit proteins in rat retina. Invest Ophthalmol Vis Sci 41:3600–3606

    PubMed  CAS  Google Scholar 

  13. Grunder T, Kohler K, Kaletta A, Guenther E (2000) The distribution and developmental regulation of NMDA receptor subunit proteins in the outer and inner retina of the rat. J Neurobiol 44:333–342

    Article  PubMed  CAS  Google Scholar 

  14. Hannappel E, Pankow G, Grassl F, Brand K, Naumann GO (1985) Amino acid pattern in human aqueous humor of patients with senile cataract and primary open-angle glaucoma. Ophthalmic Res 17:341–343

    PubMed  CAS  Google Scholar 

  15. Hartwick AT, Zhang X, Chauhan BC, Baldridge WH (2005) Functional assessment of glutamate clearance mechanisms in a chronic rat glaucoma model using retinal ganglion cell calcium imaging. J Neurochem 94:794–807

    Article  PubMed  CAS  Google Scholar 

  16. Hiroi N, Marek GJ, Brown JR, Ye H, Saudou F, Vaidya VA, Duman RS, Greenberg ME, Nestler EJ (1998) Essential role of the fosB gene in molecular, cellular, and behavioral actions of chronic electroconvulsive seizures. J Neurosci 18:6952–6962

    PubMed  CAS  Google Scholar 

  17. Hof PR, Lee PY, Yeung G, Wang RF, Podos SM, Morrison JH (1998) Glutamate receptor subunit GluR2 and NMDAR1 immunoreactivity in the retina of macaque monkeys with experimental glaucoma does not identify vulnerable neurons. Exp Neurol 153:234–241

    Article  PubMed  CAS  Google Scholar 

  18. Ikonomidou C, Turski L (1996) Neurodegenerative disorders: clues from glutamate and energy metabolism. Crit Rev Neurobiol 10:239–263

    PubMed  CAS  Google Scholar 

  19. John SW, Smith RS, Savinova OV, Hawes NL, Chang B, Turnbull D, Davisson M, Roderick TH, Heckenlively JR (1998) Essential iris atrophy, pigment dispersion, and glaucoma in DBA/2J mice. Invest Ophthalmol Vis Sci 39:951–962

    PubMed  CAS  Google Scholar 

  20. Kageyama T, Ishikawa A, Tamai M (2000) Glutamate elevation in rabbit vitreous during transient ischemia-reperfusion. Jpn J Ophthalmol 44:110–114

    Article  PubMed  CAS  Google Scholar 

  21. Kim TW, Kang KB, Choung HK, Park KH, Kim DM (2000) Elevated glutamate levels in the vitreous body of an in vivo model of optic nerve ischemia. Arch Ophthalmol 118:533–536

    PubMed  CAS  Google Scholar 

  22. Kreutz MR, Bockers TM, Bockmann J, Seidenbecher CI, Kracht M, Vorwerk CK, Weise J, Sabel BA (1998) Axonal injury alters alternative splicing of the retinal NR1 receptor. J Neurosci 18:8278–8291

    PubMed  CAS  Google Scholar 

  23. Levkovitch-Verbin H, Martin KR, Quigley HA, Baumrind LA, Pease ME, Valenta D (2002) Measurement of amino acid levels in the vitreous humor of rats after chronic intraocular pressure elevation or optic nerve transection. J Glaucoma 11:396–405

    Article  PubMed  Google Scholar 

  24. Libby RT, Anderson MG, Pang IH, Robinson ZH, Savinova OV, Cosma IM, Snow A, Wilson LA, Smith RS, Clark AF, John SW (2005) Inherited glaucoma in DBA/2J mice: pertinent disease features for studying the neurodegeneration. Vis Neurosci 22:637–648

    PubMed  Google Scholar 

  25. Lindsey JD, Weinreb RN (2005) Elevated intraocular pressure and transgenic applications in the mouse. J Glaucoma 14:318–320

    Article  PubMed  Google Scholar 

  26. Lipton SA (2001) Retinal ganglion cells, glaucoma and neuroprotection. Prog Brain Res 131:712–718

    PubMed  CAS  Google Scholar 

  27. Low HC, Gionfriddo JR, Madl JE (2006) Assessment of glutamate loss from the ganglion cell layer of young DBA/2J mice with glaucoma. Am J Vet Res 67:302–309

    Article  PubMed  CAS  Google Scholar 

  28. Lucas DR, Newhouse JP (1957) The toxic effect of sodium L-glutamate on the inner layers of the retina. Ama Arch Opthalmol 58:193–201

    CAS  Google Scholar 

  29. Luo X, Lambrou GN, Sahel JA, Hicks D (2001) Hypoglycemia induces general neuronal death, whereas hypoxia and glutamate transport blockade lead to selective retinal ganglion cell death in vitro. Invest Ophthalmol Vis Sci 42:2695–2705

    PubMed  CAS  Google Scholar 

  30. Martin KR, Levkovitch-Verbin H, Valenta D, Baumrind L, Pease ME, Quigley HA (2002) Retinal glutamate transporter changes in experimental glaucoma and after optic nerve transection in the rat. Invest Ophthalmol Vis Sci 43:2236–2243

    PubMed  Google Scholar 

  31. Massey SC, Miller RF (1990) N-methyl-D-aspartate receptors of ganglion cells in rabbit retina. J Neurophysiol 63:16–30

    PubMed  CAS  Google Scholar 

  32. Matsubara A, Nakazawa T, Husain D, Iliaki E, Connolly E, Michaud NA, Gragoudas ES, Miller JW (2006) Investigating the effect of ciliary body photodynamic therapy in a glaucoma mouse model. Invest Ophthalmol Vis Sci 47:2498–2507

    Article  PubMed  Google Scholar 

  33. Mawrin C, Pap T, Pallas M, Dietzmann K, Behrens-Baumann W, Vorwerk CK (2003) Changes of retinal glutamate transporter GLT-1 mRNA levels following optic nerve damage. Mol Vis 139:10–13

    Google Scholar 

  34. Montgomery DC (2001) Design and analysis of experiments. 5th edn. Wiley, New York, pp 74–126

    Google Scholar 

  35. Naskar R, Vorwerk CK, Dreyer EB (2000) Concurrent downregulation of a glutamate transporter and receptor in glaucoma. Invest Ophthalmol Vis Sci 41:1940–1944

    PubMed  CAS  Google Scholar 

  36. Nicholls D, Attwell D (1990) The release and uptake of excitatory amino acids. Trends Pharmacol Sci 11:462–468

    Article  PubMed  Google Scholar 

  37. Olney JW (1982) The toxic effects of glutamate and related compounds in the retina and the brain. Retina 2:341–359

    Article  PubMed  CAS  Google Scholar 

  38. Pease ME, McKinnon SJ, Quigley HA, Kerrigan-Baumrind LA, Zack DJ (2000) Obstructed axonal transport of BDNF and its receptor TrkB in experimental glaucoma. Invest Ophthalmol Vis Sci 41:764–774

    PubMed  CAS  Google Scholar 

  39. Pow DV, Barnett NL (2000) Developmental expression of excitatory amino acid transporter 5: a photoreceptor and bipolar cell glutamate transporter in rat retina. Neurosci Lett 280:21–24

    Article  PubMed  CAS  Google Scholar 

  40. Pow DV, Macnab LT, WoldeMussie E, Sullivan RKP (2006) The glutamate transporter GLT-1C is expressed by retinal ganglion cells in both glaucoma and AMD. Invest Ophthalmol Vis Sci 47:E-Abstract 891

    Google Scholar 

  41. Rauen T, Kanner BI (1994) Localization of the glutamate transporter GLT-1 in rat and macaque monkey retinae. Neurosci Lett 169:137–140

    Article  PubMed  CAS  Google Scholar 

  42. Rauen T, Rothstein JD, Wassle H (1996) Differential expression of three glutamate transporter subtypes in the rat retina. Cell Tissue Res 286:325–336

    Article  PubMed  CAS  Google Scholar 

  43. Rauen T, Taylor WR, Kuhlbrodt K, Wiessner M (1998) High-affinity glutamate transporters in the rat retina: a major role of the glial glutamate transporter GLAST-1 in transmitter clearance. Cell Tissue Res 291:19–31

    Article  PubMed  CAS  Google Scholar 

  44. Rejdak R, Kohler K, Kocki T, Shenk Y, Turski WA, Okuno E, Lehaci C, Zagorski Z, Zrenner E, Schuettauf F (2004) Age-dependent decrease of retinal kynurenate and kynurenine aminotransferases in DBA/2J mice, model of ocular hypertension. Vision Res 44:655–660

    Article  PubMed  CAS  Google Scholar 

  45. Reye P, Sullivan R, Fletcher EL, Pow DV (2002) Distribution of two splice variants of the glutamate transporter GLT1 in the retinas of humans, monkeys, rabbits, rats, cats, and chickens. J Comp Neurol 445:1–12

    Article  PubMed  Google Scholar 

  46. Schmitt A, Asan E, Lesch KP, Kugler P (2002) A splice variant of glutamate transporter GLT1/EAAT2 expressed in neurons: cloning and localization in rat nervous system. Neuroscience 109:45–61

    Article  PubMed  CAS  Google Scholar 

  47. Schuettauf F, Naskar R, Vorwerk CK, Zurakowski D, Dreyer EB (2000) Ganglion cell loss after optic nerve crush mediated through AMPA-kainate and NMDA receptors. Invest Ophthalmol Vis Sci 41:4313–4316

    PubMed  CAS  Google Scholar 

  48. Schuettauf F, Quinto K, Naskar R, Zurakowski D (2002) Effects of anti-glaucoma medications on ganglion cell survival: the DBA/2J mouse model. Vision Res 42:2333–2337

    Article  PubMed  CAS  Google Scholar 

  49. Schuettauf F, Rejdak R, Walski M, Frontczak-Baniewicz M, Voelker M, Blatsios G, Shinoda K, Zagorski Z, Zrenner E, Grieb P (2004) Retinal neurodegeneration in the DBA/2J mouse-a model for ocular hypertension. Acta Neuropathol (Berl) 107:352–358

    Article  Google Scholar 

  50. Schuettauf F, Rejdak R, Thaler S, Bolz S, Lehaci C, Mankowska A, Zarnowski T, Junemann A, Zagorski Z, Zrenner E, Grieb P (2006) Citicoline and lithium rescue retinal ganglion cells following partial optic nerve crush in the rat. Exp Eye Res 83:1128–1134

    Article  PubMed  CAS  Google Scholar 

  51. Steele MR, Inman DM, Calkins DJ, Horner PJ, Vetter ML (2006) Microarray analysis of retinal gene expression in the DBA/2J model of glaucoma. Invest Ophthalmol Vis Sci 47:977–985

    Article  PubMed  Google Scholar 

  52. Tapia R (1996) Release and uptake of glutamate as related to excitotoxicity. Rev Bras Biol 56:165–174

    PubMed  Google Scholar 

  53. Thaler S, Rejdak R, Dietrich K, Ladewig T, Okuno E, Kocki T, Turski WA, Junemann A, Zrenner E, Schuettauf F (2006) A selective method for transfection of retinal ganglion cells by retrograde transfer of antisense oligonucleotides against kynurenine aminotransferase II. Mol Vis 12:100–107

    PubMed  CAS  Google Scholar 

  54. Thoreson WB, Witkovsky P (1999) Glutamate receptors and circuits in the vertebrate retina. Prog Retin Eye Res 18:765–810

    Article  PubMed  CAS  Google Scholar 

  55. Urbanska EM, Kocki T, Saran T, Kleinrok Z, Turski WA (1997) Impairment of brain kynurenic acid production by glutamate metabotropic receptor agonists. Neuroreport 8:3501–3505

    Article  PubMed  CAS  Google Scholar 

  56. Urbanska EM, Chmielewski M, Kocki T, Turski WA (2000) Formation of endogenous glutamatergic receptors antagonist kynurenic acid-differences between cortical and spinal cord slices. Brain Res 878:210–212

    Article  PubMed  CAS  Google Scholar 

  57. Vorwerk CK, Kreutz MR, Bockers TM, Brosz M, Dreyer EB, Sabel BA (1999) Susceptibility of retinal ganglion cells to excitotoxicity depends on soma size and retinal eccentricity. Curr Eye Res 19:59–65

    Article  PubMed  CAS  Google Scholar 

  58. Vorwerk CK, Naskar R, Schuettauf F, Quinto K, Zurakowski D, Gochenauer G, Robinson MB, Mackler SA, Dreyer EB (2000) Depression of retinal glutamate transporter function leads to elevated intravitreal glutamate levels and ganglion cell death. Invest Ophthalmol Vis Sci 41:3615–3621

    PubMed  CAS  Google Scholar 

  59. Wamsley S, Gabelt BT, Dahl DB, Case GL, Sherwood RW, May CA, Hernandez MR, Kaufman PL (2005) Vitreous glutamate concentration and axon loss in monkeys with experimental glaucoma. Arch Ophthalmol 123:64–70

    Article  PubMed  CAS  Google Scholar 

  60. Ward MM, Jobling AI, Puthussery T, Foster LE, Fletcher EL (2004) Localization and expression of the glutamate transporter, excitatory amino acid transporter 4, within astrocytes of the rat retina. Cell Tissue Res 315:305–310

    Article  PubMed  CAS  Google Scholar 

  61. Yoles E, Schwartz M (1998) Elevation of intraocular glutamate levels in rats with partial lesion of the optic nerve. Arch Ophthalmol 116:906–910

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Frank Schuettauf was supported by the fortüne program (912-1-0) and the European Union (QLK6-CT-2001-00385). Dr. med. Robert Rejdak was supported by the Kerstan Foundation and European Union under a Marie Curie Individual Fellowship (QLK2-CT-2002-51562).The authors gratefully thank Prof. Kugler for providing an antibody directed at a splice variant of GLT1v for this study, Dr. Rita Naskar and Ephraim Lessell for numerous helpful comments, Sandra Bernhard-Kurz and Tomasz Choragiewicz for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Schuettauf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuettauf, F., Thaler, S., Bolz, S. et al. Alterations of amino acids and glutamate transport in the DBA/2J mouse retina; possible clues to degeneration. Graefes Arch Clin Exp Ophthalmol 245, 1157–1168 (2007). https://doi.org/10.1007/s00417-006-0531-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-006-0531-z

Keywords

Navigation