Skip to main content
Log in

OVA-specific CD8+T cells do not express granzyme B during anterior chamber associated immune deviation

  • Laboratory Investigation
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To examine antigen (Ag)-specific CTL response during anterior chamber associated immune deviation (ACAID).

Methods

OVA or OVA257-264 peptide was injected into the anterior chamber (AC) of C57BL/6 mice. There were 16 mice in each ACAID group induced with OVA or OVA257-264 peptide. The mice were primed by SC injection with OVA or OVA 257-264 peptide in complete Freund’s adjuvant (CFA) on day 7. Ag-specific CD8+T cells in spleens were analyzed on day 14 using Pentamer H-2Kb-SIINFEKL(OVA257-264 peptide). IFN-γ ELISPOT and intracellular granzyme B staining were used to characterize the CTL response. Twelve mice in each group immunized with OVA or OVA257-264 peptide in CFA served as positive controls. Twelve normal mice served as negative controls and 12 receiving injection of CFA as CFA controls for studying the influence of CFA on the Ag-specific CTL response.

Result

The results showed that anterior chamber inoculation of OVA or OVA257-264 peptide could induce ACAID as evidenced by an impaired DTH response. The frequency of Ag-specific CD8+T cells in ACAID mice was not different from that in mice challenged with Ags in CFA only (positive controls). IFN-γ production by these cells in ACAID mice was not different compared to positive controls. However, Ag-specific CD8+T cells in ACAID mice failed to secrete granzyme B. Mice challenged only with OVA peptide and CFA also showed a granzyme B negative CD8+T cell response. Ag-specific CTL response induced by CFA alone was similar with the negative control.

Conclusion

These results show that the frequency of Ag-specific CD8+T cells is not altered during ACAID. The Ag-specific CTL response during ACAID is characterized by the absence of granzyme B expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Doherty PC, Christensen JP (2000) Accessing complexity: the dynamics of virus-specific T cell responses. Annu Rev Immunol 18:561–592

    Article  PubMed  CAS  Google Scholar 

  2. Grayson JM, Murali-Krishna K, Altman JD, Ahmed R (2001) Gene expression in antigen-specific CD8+T cells during viral infection. J Immunol 166:795–799

    PubMed  CAS  Google Scholar 

  3. Guidotti LG, Ishikawa T, Hobbs MV, Matzke B, Schreiber R, Chisari FV (1996) Intracellular inactivation of the hepatitis B virus by cytotoxic T lymphocytes. Immunity 4:25–36

    Article  PubMed  CAS  Google Scholar 

  4. Harty JT, Tvinnereim AR, White DW (2000) CD8+T cell effector mechanisms in resistance to infection. Annu Rev Immunol 18:275–308

    Article  PubMed  CAS  Google Scholar 

  5. Heo DS, Park JG, Hata K, Day R, Herberman RB, Whiteside TL (1990) Evaluation of tetrazolium-based semiautomatic colorimetric assay for measurement of human antitumor cytotoxicity. Cancer Res 50:3681–3690

    PubMed  CAS  Google Scholar 

  6. Kaech SM, Wherry EJ, Ahmed R (2002) Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol 2:251–262

    Article  PubMed  CAS  Google Scholar 

  7. Kagi D, Ledermann B, Burki K, Zinkernagel RM, Hengartner H (1996) Molecular mechanisms of lymphocyte-mediated cytotoxicity and their role in immunological protection and pathogenesis in vivo. Annu Rev Immunol 14:207–232

    Article  PubMed  CAS  Google Scholar 

  8. Karulin AY, Hesse MD, Tary-Lehmann M, Lehmann PV (2000) Single-cytokine-producing CD4 memory cells predominate in type 1 and type 2 immunity. J Immunol 164:1862–1872

    PubMed  CAS  Google Scholar 

  9. Kezuka T, Streilein JW (2000) In vitro generation of regulation CD8+T cells similar to those found in mice with anterior chamber-associated immune deviation. Invest Ophthalmol Vis Sci 41:1803–1811

    PubMed  CAS  Google Scholar 

  10. Kleen TO, Asaad R, Landry SJ, Boehm BO, Tary-Lehmann M (2004) Tc1 effector diversity shows dissociated expression of granzyme B and interferon-γ in HIV infection. AIDS 18:383–392

    Article  PubMed  CAS  Google Scholar 

  11. Klein JR, Raulet DH, Pasternack MS, Bevan MJ (1982) Cytotoxic T lymphocytes produce immune interferon in response to antigen or mitogen. J Exp Med 155:1198–1203

    Article  PubMed  CAS  Google Scholar 

  12. Kruger-Krasagakes S, Garbe C, Kossman P, Orfanos CE (1992) A rapid and sensitive fluorometric microassay for determining cell mediated cytotoxicity to adherent growing cell lines. J Immunol Methods 156:1–8

    Article  PubMed  CAS  Google Scholar 

  13. Ksander BR, Streilein JW (1989) Analysis of cytotoxic T cell response to intracameral allogeneic tumors. Invest Ophthalmol Vis Sci 30:323–329

    PubMed  CAS  Google Scholar 

  14. McKenna KC, Xu YJ, Kapp JA (2002) Injection of soluble antigen into the anterior chamber of the eye induces expansion and functional unresponsiveness of antigen-specific CD8+T cells. J Immunol 169:5630–5637

    PubMed  CAS  Google Scholar 

  15. Niederkorn JY, Streilein JW, Shadduck JA (1981) Deviant immune responses to allogeneic tumors injected intracamerally and subcutaneously in mice. Invest Ophthalmol Vis Sci 20:355–363

    PubMed  CAS  Google Scholar 

  16. Niederkorn JY, Streilein JW (1983) Alloantigens placed into the anterior chamber of the eye induce specific suppression of delayed-type hypersensitivity but normal cytotoxic T lymphocyte and helper T lymphocyte responses. J Immunol 131:2670–2674

    PubMed  CAS  Google Scholar 

  17. Papadopoulos NG, Dedoussis GV, Spanakos G, Gritzapis AD, Baxevanis CN, Papamichail M (1994) An improved fluorescence assay for the determination of lymphocyte-mediated cytotoxicity using flow cytometry. J Immunol Methods 177:101–111

    Article  PubMed  CAS  Google Scholar 

  18. Porgador A, Gilboa E (1995) Bone marrow-generated dendritic cells pulsed with a class I-restricted peptide are potent inducers of cytotoxic T lymphocytes. J Exp Med 182:255–260

    Article  PubMed  CAS  Google Scholar 

  19. Power CA, Grand CL, Ismail N, Peters NC, Yurkowski DP, Bretscher PA (1999) A valid ELISPOT assay for enumeration of ex vivo, antigen-specific, IFN-γ -producing T cells. J Immunol Methods 227:99–107

    Article  PubMed  CAS  Google Scholar 

  20. Sheehy ME, McDermott AB, Furlan SN, Klenerman P, Nixon DF (2001) A novel technique for the fluorometric assessment of T lymphocyte antigen specific lysis. J Immunol Methods 249:99–110

    Article  PubMed  CAS  Google Scholar 

  21. Slezak SE, Horan PK (1989) Cell-mediated cytotoxicity. A highly sensitive and informative flow cytometric assay. J Immunol Methods 117:205–214

    Article  PubMed  CAS  Google Scholar 

  22. Slifka MK, Rodriguez F, Whitton JL (1999) Rapid on/off cycling of cytokine production by virus-specific CD8+T cells. Nature 401:76–79

    Article  Google Scholar 

  23. Stegelmann F, Bastian M, Swoboda K, Bhat R, Kiessler V, Krensky AM, Roellinghoff M, Modlin RL, Stenger S (2005) Coordinate expression of CC chemokine ligand 5, granulysin, and perforin in CD8+T cells provides a host defense mechanism against Mycobacterium tuberculosis. J Immunol 175:7474–7483

    PubMed  CAS  Google Scholar 

  24. Stein-Streilein J, Streilein JW (2002) Anterior chamber associated immune deviation (ACAID): regulation, biological relevance, and implications for therapy. Int Rev Immunol 21:123–152

    Article  PubMed  Google Scholar 

  25. Streilein JW, Neiderkorn JY, Shadduck JA (1980) Systemic immune unresponsiveness induced in adult mice by anterior chamber presentation of minor histocompatibility antigens. J Exp Med 152:1121–1125

    Article  PubMed  CAS  Google Scholar 

  26. Streilein JW, Niederkorn JY (1981) Induction of anterior chamber-associated immune deviation requires an intact, functional spleen. J Exp Med 153:1058–1067

    Article  PubMed  CAS  Google Scholar 

  27. Streilein JW, Ksander BR, Taylor AW (1997) Commentary: immune privilege, deviation and regulation in the eye. J Immunol 158:3557–3560

    PubMed  CAS  Google Scholar 

  28. Streilein JW (2003) Ocular immune privilege: the eye takes a dim but practical view of immunity and inflammation. J Leukoc Biol 74:179–185

    Article  PubMed  CAS  Google Scholar 

  29. Teague TK, Hildeman D, Kedl RM, Mitchell T, Rees W, Schaefer BC, Bender J, Kappler J, Marrack P (1999) Activation changes the spectrum but not the diversity of genes expressed by T cells. Proc Natl Acad Sci USA 96:12691–12696

    Article  PubMed  CAS  Google Scholar 

  30. Uchiyama H, Kishihara K, Minagawa R, Hashimoto K, Sugimachi K, Nomoto K (2002) Crucial Fas-Fas ligand interaction in spontaneous acceptance of hepatic allografts in mice. Immunology 105:450–457

    Article  PubMed  CAS  Google Scholar 

  31. Veiga-Fernandes H, Walter U, Bourgeois C, Mclean A, Rocha B (2000) Response of naive and memory CD8+T cells to antigen stimulation in vivo. Nat Immunol 1:47–53

    Google Scholar 

  32. Volgmann T, Klein-Struckmeier A, Mohr H (1989) A fluorescence-based assay for quantitation of lymphokine-activated killer cell activity. J Immunol Methods 119:45–51

    Article  PubMed  CAS  Google Scholar 

  33. Whittum JA, Niederkorn JY, Streilein JW (1982) Alloantigen presentation to the anterior chamber of the eye subverts specific in vitro cell-mediated immune responses. Transplantation 34:190–195

    Article  PubMed  CAS  Google Scholar 

  34. Wong P, Pamer EG (2003) CD8+T cell responses to infections pathogens. Annu Rev Immunol 21:29–70

    Article  PubMed  CAS  Google Scholar 

  35. Zinkernagel RM (1996) Immunology taught by viruses. Science 271:173–178

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peizeng Yang.

Additional information

This study was supported by the Fund for Innovative Research Groups of China (30321004), National Natural Science Foundation (30572004) and Natural Science Foundation for Research Groups of Guangdong Province (2005-04).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, Y., Yang, P., Li, B. et al. OVA-specific CD8+T cells do not express granzyme B during anterior chamber associated immune deviation. Graefe's Arch Clin Exp Ophthalmo 244, 1315–1321 (2006). https://doi.org/10.1007/s00417-006-0255-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-006-0255-0

Keywords

Navigation