Skip to main content

Advertisement

Log in

Pupil size and Perimetry—a pharmacological model using increment and decrement stimuli

  • Clinical Investigation
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

To assess the influence of natural and pharmacologically induced pupil size fluctuations on differential luminance sensitivity threshold (DLS) using bright (increment) and dark (decrement) stimuli.

Methods

Twelve healthy volunteers (20–30 years) were examined under the effect of phenylephrine 2%, dapiprazole 0.5%, and placebo. Pupil size was recorded by infra-red video camera in sessions without and with visual field examination (Tübingen Computer Campimeter). DLS was estimated at 9 locations within the central 20° visual field, using bright and dark 26 min-of-arc-stimuli (10 cd/m2 background, 4-2-1 dB thresholding strategy, four reversals).

Results

There were substantial inter-individual differences in pupil size and pupil size fluctuations. Intra-individual differences were small. Independently of medication, pupil size fluctuations were reduced by more than one-third when a subject was undergoing perimetric examination. Pupil size affected DLS on its own (slope 0.21 dB/mm; 95% CI: 0.09–0.33 dB/mm), differently at different stimulus locations, and to a greater extent with increment than with decrement stimuli (slope difference 0.13 dB/mm; 95% CI: 0.00–0.26 dB/mm).

Conclusions

Campimetric examinations have a stabilising effect on pupil size fluctuations. Pupil size affects DLS with bright stimuli more than with dark stimuli; in normal young subjects this effect is not relevant for clinical or normative studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aspinall PA (1967) Variables affecting the retinal threshold gradient in static perimetry. Master of Science Thesis. Department of Psychology, University of Edinburgh

  2. Brenton RS, Phelps CD (1986) The normal visual field on the Humphrey Field Analyser. Ophthalmologica 193:56–74

    Article  PubMed  CAS  Google Scholar 

  3. Day RM, Scheie HG (1953) Simulated progression of visual field defects of glaucoma. Arch Ophthalmol 50:418–433

    CAS  Google Scholar 

  4. Dietrich TJ, Selig B, Friedrich M, Benda N, Schiefer U (1996) Calibration routines for video display units for perimetric examinations. Ger J Ophthalmol 5(Suppl 1):125

    Google Scholar 

  5. Engel S (1942) Influence of a constricted pupil on the field in glaucoma. Arch Ophthalmol 27:1184–1187

    Google Scholar 

  6. Fitting PL, Mermoud A (1992) Modifications du champ visuel lors de l’interruption temporaire du traitement myotique [Modification of the visual field during temporary interruption of miotic treatment]. Klin Mbl Augenheilk :481–483

    Google Scholar 

  7. Flammer J, Drance SM, Fankhauser F, Augustiny L (1984) Differential light threshold in automated static perimetry. Factors influencing short-term fluctuation. Arch Ophthalmol 102:876–879

    PubMed  CAS  Google Scholar 

  8. Forbes M (1966) Influence of miotics on visual fields in glaucoma. Invest Ophthalmol Vis Sci 5:139–145

    Google Scholar 

  9. Gleissner M, Lachenmayr BJ (1992) Lichtsinn- und Flimmerperimetrie. Einfluss von Fehlrefraktion, artifiziellen Medientrübungen und Pupillenweite [Light perception and flicker perimetry. Effect of refractive error, artificial media opacities and pupillary size]. Ophthalmologe 89(2):162–165

    PubMed  CAS  Google Scholar 

  10. Harrington DO (1981) Instruments of perimetry and their use. The visual fields—a textbook and atlas of clinical perimetry. Mosby, St Louis

    Google Scholar 

  11. Lindenmuth KA, Skuta GL, Rabbani R, Musch DC (1989) Effects of pupillary constriction on automated perimetry in normal eyes. Ophthalmology 96(9):1298–1301

    PubMed  CAS  Google Scholar 

  12. Lindenmuth KA, Skuta GL, Rabbani R, Musch DC, Bergstrom TJ (1990) Effects of pupillary dilation on automated perimetry in normal patients. Ophthalmology 97:367–370

    PubMed  CAS  Google Scholar 

  13. Loewenfeld IE (1999) The pupil. Anatomy, physiology and clinical applications. Butterworth-Heinemann, Boston

    Google Scholar 

  14. Lüdtke H, Wilhelm B, Adler M (1998) Mathematical procedures in data recording and processing of pupillary fatigue waves. Vision Res 38:2889–2896

    Article  PubMed  Google Scholar 

  15. Lutz S, Dietrich TJ, Benda N, Selig B, Strasburger H, Schiefer U (2001) An explicit no response instead of time-out in automated visual field testing. Graefe Arch Clin Exp Ophthalmol 239:173–181

    Article  CAS  Google Scholar 

  16. McCluskey DJ, Douglas JP, O’Connor PS, Story K, Ivy LM, Harvey JS (1986) The effect of pilocarpine on the visual field in normals. Ophthalmology 93:843–846

    PubMed  CAS  Google Scholar 

  17. Mikelberg FS, Drance SM, Schulzer M, Wijsman K (1996) The effect of miosis on visual field indices. Doc Ophthalmol Proc Ser 49:645–649

    Google Scholar 

  18. Milton JG, Longtin A (1990) Evaluation of pupil constriction and dilation from cycling measurements. Vision Res 30(4):515–525

    Article  PubMed  CAS  Google Scholar 

  19. Milton JG, van der Heiden U, Lontin A, Mackey MC (1990) Complex dynamics and noise in simple neural networks with delayed mixed feedback. Biomed Biochim Acta 49:697–707

    PubMed  CAS  Google Scholar 

  20. Mordi JA, Lyle WM, Mousa GY (1986) Effect of phenylephrine on accommodation. Am J Optom Physiol Opt 63(4):294–297

    PubMed  CAS  Google Scholar 

  21. Mutlukan E (1994) A comparison of automated static dark stimuli with the Humphrey STATPAC program in glaucomatous visual field loss. Br J Ophthalmol 78:175–184

    Article  PubMed  CAS  Google Scholar 

  22. Pinkerton RM, Reifel C (1971) The effect of phenylephrine 10 per cent on quantitative perimetry. Can J Ophthalmol 6(2):104–108

    PubMed  CAS  Google Scholar 

  23. Rebolleda G, Munoz FJ, Fernandez Victorio JM, Pellicer T, del Castillo JM (1992) Effects of pupillary dilation on automated perimetry in glaucoma patients receiving pilocarpine. Ophthalmology 99(3):418–423

    PubMed  CAS  Google Scholar 

  24. Rosenbach O (1903) Über monoculare Vorherrschaft beim binocularen Sehen [On monocular prevalence in binocular vision]. Med Wochenschrift 50:1290–1292

    Google Scholar 

  25. Wabbels B, Schiefer U, Treutwein B, Benda N, Stercken-Sorrenti G (1995) Automated perimetry with bright and dark stimuli. Ger J Ophthalmol 4:217–221

    PubMed  CAS  Google Scholar 

  26. Warga M (2002) Spontanoszillationen der Pupillenweite. Untersuchung unter konstanten Beleuchtungsbedingungen bei unterschiedlicher zentralnervöser Aktivierung. [Spontaneous pupillary oscillations. The effect of various alertness levels und constant illumination conditions]. Doctoral Thesis, Tübingen

  27. Wilcox CS, Heiser JF, Crowder AM, Wassom NJ, Katz BB, Dale JL (1995) Comparison of the effects on pupil size and accommodation of three regimens of topical dapiprazole. Br J Ophthalmol 79(6):544–548

    Article  PubMed  CAS  Google Scholar 

  28. Wilensky JT, Joondeph BC (1984) Variation in visual field measurements with an automated perimeter. Am J Ophthalmol 97(3):328–331

    PubMed  CAS  Google Scholar 

  29. Wilhelm B, Wilhelm H, Lüdtke H, Streicher P, Adler M (1998) Pupillographic assessment of sleepiness in sleep-deprived healthy subjects. Sleep 21:258–265

    PubMed  CAS  Google Scholar 

  30. Williams TD (1983) Aging and the central visual field area. Am J Optom Physiol Opt 60:888–891

    Google Scholar 

  31. Wood JM, Wild JM, Bullimore MA, Gilmartin B (1988) Factors affecting the normal perimetric profile derived by automated static threshold LED perimetry. I. Pupil size. Ophthalm Physiol Opt 8(1):26–31

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Schiefer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, D.D., Vonthein, R., Wilhelm, H. et al. Pupil size and Perimetry—a pharmacological model using increment and decrement stimuli. Graefe's Arch Clin Exp Ophthalmo 243, 1091–1097 (2005). https://doi.org/10.1007/s00417-005-1185-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-005-1185-y

Keywords

Navigation