Skip to main content

Advertisement

Log in

Cortisol promotes survival and regeneration of axotomised retinal ganglion cells and enhances effects of aurintricarboxylic acid

  • Laboratory Investigation
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Neuroprotection is essential for repair processes after a traumatic insult in the central nervous system. We have demonstrated previously significant neuroprotective properties of the anti-apoptotic drug aurintricarboxylic acid in the model of axotomised retinal ganglion cells. Glucocorticoids are widely used to treat injuries of the nervous system. Due to the anti-inflammatory and microglia-inhibiting properties of glucocorticoids, we studied the neuroprotective effects of intravitreally administered cortisol after an optic nerve cut.

Methods

Ninety-eight adult Sprague–Dawley rats were used in this study. The optic nerve was cut intra-orbitally. Either vehicle or compound solution was injected intravitreally. Fluorescent dye was put onto the optic nerve stump to label retinal ganglion cells retrogradely. Retinal whole mounts were prepared 2 weeks after axotomy, and surviving retinal ganglion cells were counted.

Results

Two weeks after axotomy, up to 50±7% of all retinal ganglion cells survived if cortisol was injected into the eye compared with 17±5% survival if only vehicle solution was injected. The neuroprotective effects of aurintricarboxylic acid (43±5% survival) could be further enhanced if combined with cortisol (up to 61±5% survival). Regeneration of cut retinal ganglion cell axons into a peripheral nerve graft could also be enhanced by an intravitreal injection of cortisol (169±42 regenerating retinal ganglion cells per mm2 vs. 73±12 cells per mm2 after vehicle injection). The increase was not as high as with aurintricarboxylic acid (192±40 cells per mm2), although more retinal ganglion cells survived with cortisol. This indicates that neuronal survival alone is not sufficient for subsequent axonal regeneration. Nevertheless, regeneration could be markedly increased if aurintricarboxylic acid and cortisol were combined (308±72 cells per mm2).

Conclusions

Whereas aurintricarboxylic acid seems to act directly on lesioned retinal ganglion cells, cortisol seems to act on the glial environment, as indicated by microglial cell morphology and enhanced glial fibrillary acidic protein expression. The results show that both neuroprotection and regeneration can be enhanced by the combination of two simple compounds acting on different sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Almeida OF, Conde GL, Crochemore C, Demeneix BA, Fischer D, Hassan AH, Meyer M, Holsboer F, Michaelidis TM (2000) Subtle shifts in the ratio between pro- and antiapoptotic molecules after activation of corticosteroid receptors decide neuronal fate. FASEB J 14:779–790

    PubMed  CAS  Google Scholar 

  2. Amin AR, Vyas P, Attur M, Leszczynska-Piziak J, Patel IR, Weissmann G, Abramson SB (1995) The mode of action of aspirin-like drugs: effect on inducible nitric oxide synthase. Proc Nat Acad Sci USA 92:7926–7930

    Article  PubMed  CAS  Google Scholar 

  3. Armaly MF (1965) Statistical attributes of the steroid hypertensive response in the clinically normal eye. I. The demonstration of three levels of response. Invest Ophthalmol 4:187–197

    PubMed  CAS  Google Scholar 

  4. Barkana Y, Belkin M (2004) Neuroprotection in ophthalmology: a review. Brain Res Bull 62:447–453

    Article  PubMed  CAS  Google Scholar 

  5. Barr CS, Dokas LA (1999) Glucocorticoids regulate the synthesis of HSP27 in rat brain slices. Brain Res 847:9–17

    Article  PubMed  CAS  Google Scholar 

  6. Becker KW, Kienecker E-W, Andrae I (1987) Einfluβ lokal applizierter Kortikoide auf die Morphologie peripherer Nerven nach Neurotmesis und mikrochirurgischer Naht. Neurochirurgia 30:161–167

    PubMed  CAS  Google Scholar 

  7. Bianchi M, Meng C, Ivashkiv LB (2000) Inhibition of IL-2-induced Jak-STAT signaling by glucocorticoids. Proc Nat Acad Sci USA 97:9573–9578

    Article  PubMed  CAS  Google Scholar 

  8. Biola A, Andréau K, David M, Sturm M, Haake M, Bertoglio J, Pallardy M (2000) The glucocorticoid receptor and STAT6 physically and functionally interact in T-lymphocytes. FEBS Lett 487:229–233

    Article  PubMed  CAS  Google Scholar 

  9. Boldrey E, Giansiracusa J, Beltran P (1951) The effect of cortisone and ACTH on scarring in the brain and in peripheral nerves. Surg Forum 2:386–388

    Google Scholar 

  10. Bracken MB, Shepard MJ, Holford TR, Leo-Summers L, Aldrich EF, Fazl M, Fehlings M, Herr DL, Hitchon PW, Marshall LF, Nockels RP, Pascale V, Perot PL Jr, Piepmeier J, Sonntag VK, Wagner F, Wilberger JE, Winn HR, Young W (1997) Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study. JAMA 277:1597–1604

    Article  PubMed  CAS  Google Scholar 

  11. Braughler JM, Hall ED (1985) Current application of “high-dose” steroid therapy for CNS injury. J Neurosurg 62:806–810

    Article  PubMed  CAS  Google Scholar 

  12. Carnahan MC, Goldstein DA (2000) Ocular complications of topical, peri-ocular, and systemic corticosteroids. Curr Opin Ophthalmol 11:478–483

    Article  PubMed  CAS  Google Scholar 

  13. Castaño A, Lawson LJ, Fearn S, Perry VH (1996) Activation and proliferation of murine microglia are insensitive to glucocorticoids in Wallerian degeneration. Eur J Neurosci 8:581–588

    Article  PubMed  Google Scholar 

  14. Chan TK, Wong JS, Ram RS, Amrith S (1996) Visual recovery following treatment with very high dose corticosteroid in traumatic optic neuropathy. Singapore Med J 37:216–217

    PubMed  CAS  Google Scholar 

  15. Chao TC, Van Alten PJ, Walter RJ (1994) Steroid sex hormones and macrophage function: modulation of reactive oxygen intermediates and nitrite release. Am J Reprod Immunol 32:43–52

    PubMed  CAS  Google Scholar 

  16. Chaum E (2003) Retinal neuroprotection by growth factors: a mechanistic perspective. J Cell Biochem 88:57–75

    Article  PubMed  CAS  Google Scholar 

  17. Chen C-W, Chao Y, Chang Y-H, Hsu M-J, Lin W-W (2002) Inhibition of cytokine-induced JAK-STAT signalling pathways by an endonuclease inhibitor aurintricarboxylic acid. Br J Pharmacol 137:1011–1020

    Article  PubMed  CAS  Google Scholar 

  18. Coleman WP, Benzel D, Cahill DW, Ducker T, Geisler F, Green B, Gropper MR, Goffin J, Madsen PW 3rd, Maiman DJ, Ondra SL, Rosner M, Sasso RC, Trost GR, Zeidman S (2000) A critical appraisal of the reporting of the National Acute Spinal Cord Injury Studies (II and III) of methylprednisolone in acute spinal cord injury. J Spinal Disord 13:185–199

    Article  PubMed  CAS  Google Scholar 

  19. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  PubMed  CAS  Google Scholar 

  20. De Nicola AF, Ferrini M, Gonzalez SL, Gonzalez Deniselle MC, Grillo CA, Piroli G, Saravia F, de Kloet ET (1998) Regulation of gene expression by corticoid hormones in the brain and spinal cord. J Steroid Biochem Mol Biol 65:253–272

    Article  PubMed  Google Scholar 

  21. Derouiche A, Rauen T (1995) Coincidence of L-glutamate/L-aspartate transporter (GLAST) and glutamine synthetase (GS) immunoreactions in retinal glia: evidence for coupling of GLAST and GS in transmitter clearance. J Neurosci Res 42:131–143

    Article  PubMed  CAS  Google Scholar 

  22. Diem R, Hobom M, Maier K, Weissert R, Storch MK, Meyer R, Bähr M (2003) Methylprednisolone increases neuronal apoptosis during autoimmune CNS inflammation by inhibition of an endogenous neuroprotective pathway. J Neurosci 23:6993–7000

    PubMed  CAS  Google Scholar 

  23. Drew PD, Chavis JA (2000) Inhibition of microglial cell activation by cortisol. Brain Res Bull 52:391–396

    Article  PubMed  CAS  Google Scholar 

  24. Farkas RH, Grosskreutz CL (2001) Apoptosis, neuroprotection, and retinal ganglion cell death: an overview. Int Ophthalmol Clin 41:111–130

    Article  PubMed  CAS  Google Scholar 

  25. Ganter S, Northoff H, Mannel D, Gebicke-Haerter PJ (1992) Growth control of cultured microglia. J Neurosci Res 33:218–230

    Article  PubMed  CAS  Google Scholar 

  26. Garcia-Zambrano W, Gonzáles-Angulo A, Rivas A, Mateos-Gómez JH (1982) Effect of dexamethasone on healing of sutured arteries and nerves. Arch Invest Med (Mex) 13:157–166

    CAS  Google Scholar 

  27. Garrido C, Bruey JM, Fromentin A, Hammann A, Arrigo AP, Solary E (1999) HSP27 inhibits cytochrome c-dependent activation of procaspase-9. FASEB J 13:2061–2070

    PubMed  CAS  Google Scholar 

  28. Gorovits R, Avidan N, Avisar N, Shaked I, Vardimon L (1997) Glutamine synthetase protects against neuronal degeneration in injured retinal tissue. Proc Nat Acad Sci USA 94:7024–7029

    Article  PubMed  CAS  Google Scholar 

  29. Graham WP III, Pataky PE, Calabretta AM, Munger BL, Buda MJ (1973) Enhancement of peripheral nerve regeneration with triamcinolone after neurorraphy. Surg Forum 24:457–459

    PubMed  Google Scholar 

  30. Heiduschka P, Thanos S (2000) Restoration of the retinofugal pathway. Progr Retin Eye Res 19:577–606

    Article  PubMed  CAS  Google Scholar 

  31. Heiduschka P, Thanos S (2000) Aurintricarboxylic acid promotes survival and regeneration of axotomised retinal ganglion cells in vivo. Neuropharmacology 39:889–902

    Article  PubMed  CAS  Google Scholar 

  32. Heiduschka P, Fischer D, Thanos S (2004) Neuroprotection and regeneration after traumatic lesion of the optic nerve. Klin Monatsbl Augenheilkd 221:684–701

    Article  PubMed  CAS  Google Scholar 

  33. Huang ZB, Eden E (1993) Effect of corticosteroids on IL1 β and TNF α release by alveolar macrophages from patients with AIDS and Pneumocystis carinii pneumonia. Chest 104:751–755

    PubMed  CAS  Google Scholar 

  34. Kaur C, Wu CH, Wen CY, Ling EA (1994) The effects of subcutaneous injections of gluco-corticoids on amoeboid microglia in postnatal rats. Arch Histol Cytol 57:449–459

    PubMed  CAS  Google Scholar 

  35. Krueger-Naug AMR, Emsley JG, Myers TL, Currie RW, Clarke DB (2002) Injury to retinal ganglion cells induces expression of the small heat shock protein Hsp27 in the rat visual system. Neuroscience 4:653–665

    Article  Google Scholar 

  36. Laping NJ, Teter B, Nichols NR, Rozovsky I, Finch CE (1994) Glial fibrillary acidic protein: regulation by hormones, cytokines, and growth factors. Brain Pathol 1:259–275

    Google Scholar 

  37. Lechner J, Welte T, Doppler W (1997) Mechanism of interaction between the glucocorticoid receptor and Stat5: role of DNA-binding. Immunobiology 198:112–123

    PubMed  CAS  Google Scholar 

  38. Maurel D, Sage D, Mekaouche M, Bosler O (2000) Glucocorticoids up-regulate the expression of glial fibrillary acidic protein in the rat suprachiasmatic nucleus. Glia 29:212–221

    Article  PubMed  CAS  Google Scholar 

  39. Morrison RS, de Vellis J, Lee YL, Bradshaw RA, Eng LF (1985) Hormones and growth factors induce the synthesis of glial fibrillary acidic protein in rat brain astrocytes. J Neurosci Res 14:167–176

    Article  PubMed  CAS  Google Scholar 

  40. Nichols NR, Osterburg HH, Masters JN, Millar SL, Finch CE (1990) Messenger RNA for glial fibrillary acidic protein is decreased in rat brain following acute and chronic corticosterone treatment. Mol Brain Res 7:1–7

    Article  PubMed  CAS  Google Scholar 

  41. O’Callaghan JP, Brinton RE, McEwen BS (1991) Glucocorticoids regulate the synthesis of glial fibrillary acidic protein in intact and adrenalectomized rats but do not affect its expression following brain injury. J Neurochem 57:860–869

    Article  PubMed  CAS  Google Scholar 

  42. Osborne NN, Chidlow G, Wood JPM, Schmidt K-G, Casson R, Melena J (2001) Expectations in the treatment of retinal diseases: neuroprotection. Curr Eye Res 22:321–332

    Article  PubMed  CAS  Google Scholar 

  43. Packan DR, Sapolsky RM (1990) Glucocorticoid endangerment of the hippocampus: tissue, steroid and receptor specificity. Neuroendocrinology 51:613–618

    PubMed  CAS  Google Scholar 

  44. Qian T, Campagnolo D, Kirshblum S (2000) High-dose methylprednisolone may do more harm for spinal cord injury. Med Hypotheses 55:452–453

    Article  PubMed  CAS  Google Scholar 

  45. Rauen T, Wieβner M (2000) Fine tuning of glutamate uptake and degradation in glial cells: common transcriptional regulation of GLAST1 and GS. Neurochem Int 37:179–189

    Article  PubMed  CAS  Google Scholar 

  46. Sheng Y, Zhu Y, Wu L (2004) Effect of high dosage of methylprednisolone on rat retinal ganglion cell apoptosis after optic nerve crush. Yan Ke Xue Bao 20:181–186

    PubMed  CAS  Google Scholar 

  47. Sherif Z, Pleyer U (2002) Corticosteroids in ophthalmology: past-present-future. Ophthalmologica 216:305–315

    Article  PubMed  Google Scholar 

  48. Short DJ, El Masry WS, Jones PW (2000) High dose methylprednisolone in the management of acute spinal cord injury—a systematic review from a clinical perspective. Spinal Cord 38:273–286

    Article  PubMed  CAS  Google Scholar 

  49. So E-Y, Kim S-H, Cho B-S, Park H-H, Lee C-E (2002) Corticosteroid inhibits IL-4 signaling through down-regulation of IL-4 receptor and STAT6 activity. FEBS Lett 518:53–59

    Article  PubMed  CAS  Google Scholar 

  50. Spoor TC, Hartel WC, Lensink DB, Wilkinson MJ (1990) Treatment of traumatic optic neuropathy with corticosteroids. Am J Ophthalmol 110:665–669

    PubMed  CAS  Google Scholar 

  51. Starkman MN, Gebarski SS, Berent S, Schteingart DE (1992) Hippocampal formation volume, memory dysfunction, and cortisol levels in patients with Cushing’s syndrome. Biol Psychiatry 32:756–765

    Article  PubMed  CAS  Google Scholar 

  52. Steinsapir KD, Goldberg RA, Sinha S, Hovda DA (2000) Methylprednisolone exacerbates axonal loss following optic nerve trauma in rats. Restor Neurol Neurosci 17:157–163

    PubMed  CAS  Google Scholar 

  53. Tanaka J, Fujita H, Matsuda S, Toku K, Sakanaka M, Maeda N (1997) Glucocorticoid and mineralocorticoid receptors in microglial cells: the two receptors mediate differential effects of corticosteroids. Glia 20:23–37

    Article  PubMed  CAS  Google Scholar 

  54. Thanos S, Mey J, Wild M (1993) Treatment of the adult retina with microglia-suppressing factors retards axotomy-induced neuronal degradation and enhances axonal regeneration in vivo and in vitro. J Neurosci 13:455–466

    PubMed  CAS  Google Scholar 

  55. Thanos S, Kacza J, Seeger J, Mey J (1994) Old dyes for new scopes: the phagocytosis-dependent long-term fluorescence labelling of microglial cells in vivo. Trends Neurosci 17:177–182

    Article  PubMed  CAS  Google Scholar 

  56. Urban RC Jr, Cotlier E (1986) Corticosteroid-induced cataracts. Surv Ophthalmol 31:102–110

    Article  PubMed  CAS  Google Scholar 

  57. Van der Goes A, Hoekstra K, van den Berg TK, Dijkstra CD (2000) Dexamethasone promotes phagocytosis and bacterial killing by human monocytes/macrophages in vitro. J Leukoc Biol 67:801–807

    PubMed  Google Scholar 

  58. Vardimon L, Ben-Dror I, Avisar N, Oren A, Shiftan L (1999) Glucocorticoid control of glial gene expression. J Neurobiol 40:513–527

    Article  PubMed  CAS  Google Scholar 

  59. Vijayan VK, Cotman CW (1987) Hydrocortisone administration alters glial reaction to entorhinal lesion in the rat dentate gyrus. Exp Neurol 96:307–320

    Article  PubMed  CAS  Google Scholar 

  60. Zhao ZQ, Morris CD, Budde JM, Wang NP, Muraki S, Sun HY, Guyton RA (2003) Inhibition of myocardial apoptosis reduces infarct size and improves regional contractile dysfunction during reperfusion. Cardiovasc Res 59:132–142

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the grant no. 01 Ko 9805/7 from the German Federal Ministry for Education and Research (BMBF) and by a grant from the BMBF (no. 01 KS 9604/0) and the Interdisciplinary Centre of Clinical Research Münster (IZKF Project No. 3 F7). W. Lagrèze and R. Naskar are acknowledged for their critical reading of the manuscript and linguistic help respectively. I. Romann is acknowledged for performing immunohistochemistry and M. Langkamp-Flock for Western blot analysis respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Heiduschka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heiduschka, P., Thanos, S. Cortisol promotes survival and regeneration of axotomised retinal ganglion cells and enhances effects of aurintricarboxylic acid. Graefe's Arch Clin Exp Ophthalmo 244, 1512–1521 (2006). https://doi.org/10.1007/s00417-005-0164-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-005-0164-7

Keywords

Navigation