Skip to main content

Advertisement

Log in

In vivo assessment of subretinally implanted microphotodiode arrays in cats by optical coherence tomography and fluorescein angiography

  • Laboratory Investigation
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Following multiple promising investigations into restoration of vision in degenerative retinal disease by implantation of a sub- or epiretinal prosthesis, the step to clinical use in humans is impending. In this study we intended to establish optical coherence tomography (OCT) and fluorescein angiography (FA) first in research animals for noninvasive assessment of the condition of the posterior pole of eyes after intraocular implant surgery.

Methods

Three adult cats that had undergone subretinal implant surgery were evaluated by OCT and FA between 1 and 470 days postoperatively. Eight adult cats served as control. In addition histology was performed.

Results

In all three cats OCT demonstrated stable positioning of the implants in the subretinal space during the complete examination period. Transient retinal edema was found in the early postoperative period but decreased during follow-up. The retina over the implants was well attached at all times in cats 1 and 2; however, in cat 3 localized retinal detachment was demonstrated. FA showed intact retinal vasculature over the subretinal implant in high detail without interference from choroidal background fluorescence.

Conclusions

OCT and FA have been fruitfully applied to cats to assess the morphological and circulatory conditions of the neuroretina and of its interface with the subretinal implant. The techniques may therefore provide a tool for objective, noninvasive in vivo evaluation of eyes that have undergone subretinal implant surgery, both in research animals and in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chow AY, Chow VY (1997) Subretinal electrical stimulation of the rabbit retina. Neurosci Lett 225:13–16

    CAS  PubMed  Google Scholar 

  2. Chow AY, Packo KH, Pollack JS, Schuchard RA (2003) Subretinal artificial silicon retina microchip implantation in retinitis pigmentosa patients: long term follow-up. Invest Ophthalmol Vis Sci abstract, annual meeting

    Google Scholar 

  3. Eckhorn R, Stett A, Schanze T, Gekeler F, Schwahn H, Zrenner E, Wilms M, Eger M, Hesse L (2001) [Physiological functional evaluation of retinal implants in animal models]. Ophthalmologe 98:369–375

    Article  CAS  PubMed  Google Scholar 

  4. Gekeler F, Schwahn HN, Stett A, Kohler K, Zrenner E (2001) Subretinal microphotodiodes to replace photoreceptor-function—a review of the current state. In: Doly M, Droy M-T, Christen Y (eds) Vision, sensations et environnement, Irvinn, Paris, pp 77–95

  5. Hill DW, Young S (1975) Infrared angiography of the cat fundus oculi. Arch Ophthalmol 93:131–133

    CAS  PubMed  Google Scholar 

  6. Humayun MS, de Juan EJ, Weiland JD, Dagnelie G, Katona S, Greenberg R, Suzuki S (1999) Pattern electrical stimulation of the human retina. Vision Res 39:2569–2576

    CAS  PubMed  Google Scholar 

  7. Humayun MS, Prince M, de Juan EJ, Barron Y, Moskowitz M, Klock IB, Milam AH (1999) Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. Invest Ophthalmol Vis Sci 40:143–148

    CAS  PubMed  Google Scholar 

  8. Kambara C, Inoda S, Shimizu Y, Tanabe K, Tuckwell HC (2000) [Optical coherence tomographic features after surgery for rhegmatogenous retinal detachment with macular involvement]. Jpn J Clin Ophthalmol 54:327–330

    Google Scholar 

  9. Kohler K, Hartmann JA, Werts D, Zrenner E (2001) [Histological studies of retinal degeneration and biocompatibility of subretinal implants]. Ophthalmologe 98:364-368

    Article  CAS  PubMed  Google Scholar 

  10. Loewenstein JI, Rizzo JF, Montezuma SR (2002) Implantation of subretinal polyimide in Yucatan pigs. Invest Ophthalmol Vis Sci abstract, annual meeting

  11. Milam AH, Li ZY, Fariss RN (1998) Histopathology of the human retina in retinitis pigmentosa. Prog Retin Eye Res 17:175–205

    Article  CAS  PubMed  Google Scholar 

  12. Pardue MT, Stubbs EB, Jr., Perlman JI, Narfstrom K, Chow AY, Peachey NS (2001) Immunohistochemical studies of the retina following long-term implantation with subretinal microphotodiode arrays. Exp Eye Res 73:333–343

    Article  CAS  PubMed  Google Scholar 

  13. Puliafito CA, Hee MR, Lin CP, Reichel E, Schuman JS, Duker JS, Izatt JA, Swanson EA, Fujimoto JG (1995) Imaging of macular diseases with optical coherence tomography. Ophthalmology 102:217–229

    CAS  PubMed  Google Scholar 

  14. Santos A, Humayun MS, de Juan EJ, Greenburg RJ, Marsh MJ, Klock IB, Milam AH (1997) Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. Arch Ophthalmol 115:511–515

    CAS  PubMed  Google Scholar 

  15. Schwahn HN, Gekeler F, Kohler K, Kobuch K, Sachs HG, Schulmeyer F, Jakob W, Gabel VP, Zrenner E (2001) Studies on the feasibility of a subretinal visual prosthesis: data from Yucatan micropig and rabbit. Graefes Arch Clin Exp Ophthalmol 239:961–967

    CAS  PubMed  Google Scholar 

  16. Wyatt J, Rizzo JF (1996) Ocular implants for the blind. IEEE Spectrum 33:47–53

    Article  Google Scholar 

  17. Zrenner E (2002) Will retinal implants restore vision? Science 295:1022–1025

    CAS  PubMed  Google Scholar 

  18. Zrenner E, Stett A, Weiss S, Aramant RB, Guenther E, Kohler K, Miliczek K-D, Seiler MJ, Haemmerle H (1999) Can subretinal microphotodiodes successfully replace degenerated photoreceptors? Vision Res 39:2555–2567

    CAS  PubMed  Google Scholar 

  19. Zrenner E, Gekeler F, Gabel VP, Graf HG, Graf M, Guenther E, Haemmerle H, Hoefflinger B, Kobuch K, Kohler K, Nisch W, Sachs H, Schlosshauer B, Schubert M, Schwahn H, Stelzle M, Stett A, Troeger B, Weiss S (2001) [Subretinal microphotodiode array as replacement for degenerated photoreceptors?]. Ophthalmologe 98:357–363

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Support of this study was provided by the Keio Gijuku Fukuzawa Memorial Fund for the Advancement of Education and Research and the German Federal Ministry of Education and Research (BMBF), grant 01 IN 502 A. The authors thank Chiaki Kato and Mitsuko Agarie for excellent technical advice. The collaboration with our partners in Stuttgart (IMS and IPE) and Reutlingen (NMI), who delivered the subretinal implants and were helpful in solving many technical problems, is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kei Shinoda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Völker, M., Shinoda, K., Sachs, H. et al. In vivo assessment of subretinally implanted microphotodiode arrays in cats by optical coherence tomography and fluorescein angiography. Graefe's Arch Clin Exp Ophthalmol 242, 792–799 (2004). https://doi.org/10.1007/s00417-004-0935-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-004-0935-6

Keywords

Navigation