Skip to main content
Log in

Distribution of scotoma pattern related to chiasmal lesions with special reference to anterior junction syndrome

  • Clinical Investigation
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate pathogenetic mechanisms and frequency distribution of visual field defects (VFDs) in patients with chiasmal lesions. Secondly, to reconsider the existence of “Wilbrand’s knee” as far as referable to the anterior junction syndrome.

Methods

Consecutive visual field records related to chiasmal lesions were retrieved from the Tuebingen Perimetric Database. In all cases, at least one eye was examined with the Tuebingen Automated Perimeter using a standardized grid of 191 static targets within the central 30° visual field, and a threshold-related, slightly supraliminal strategy. VFDs were classified according to standard neuro-ophthalmological categories.

Results

Results from 153 consecutive patients (65 male, 88 female) were evaluable. The majority (65%) of chiasmal lesions was due to pituitary adenoma, followed by craniopharyngioma (12%), astrocytoma (9%), and meningioma (8%). Vascular lesions in this region occurred rarely (2%). Three per cent of all patients had no final diagnosis. The majority (22%) of scotomas was attributable to involvement of the temporal hemifield in both eyes, with true bitemporal hemianopia being a very rare event (1%). Anterior junction syndrome, characterized by advanced visual field loss affecting the visual field centre in one eye and (possibly subtle) defects respecting the vertical midline in the fellow eye, was the second most frequent classifiable VFD (13%). Homonymous hemianopic VFDs occurred in 11% of all cases. Nine per cent of all patients exhibited monocular VFDs which did not respect the vertical midline, whereas in 3% of the subjects the monocular VFDs did not cross the vertical meridian. Binasal defects and posterior junction syndrome also occurred seldom (<1%). Nineteen per cent of all visual field records of patients with chiasmal lesions had results, which could not be classified unequivocally, and an identical portion was rated normal.

Conclusion

In patients with chiasmal lesions, incomplete involvement of the temporal hemifields in both eyes was the most frequent event (22%), followed by anterior junction syndrome (13%). The latter entity at least clinically indicates the proximity of the pre-chiasmal ipsilateral optic nerve and decussating fibres emanating from the inferior nasal hemiretina of the fellow eye. However, this cannot provide conclusive evidence for the existence of anterior Wilbrand’s knee.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6a,b

Similar content being viewed by others

References

  1. Alvarez-Bolado G, Schwarz M, Gruss P (1997) Pax-2 in the chiasm. Cell Tissue Res 290:197–200

    CAS  PubMed  Google Scholar 

  2. Apkarian P, Eckhardt PG, van Schooneveld MJ (1991) Detection of optic pathway misrouting in the human albino neonate. Neuropediatrics 22:211–215

    CAS  PubMed  Google Scholar 

  3. Apkarian P, Bour LJ, Barth PG, Wenniger-Prick L, Verbeeten B Jr (1995) Non-decussating retinal-fugal fibre syndrome. An inborn achiasmatic malformation associated with visuotopic misrouting, visual evoked potential ipsilateral asymmetry and nystagmus. Brain 118:1195–1216

    PubMed  Google Scholar 

  4. Aulhorn E (1974) Gesichtsfeldausfälle bei sellären und parasellären Prozessen. Ber Zusammenkunft Dtsch Ophthalmol Ges :7221–7229

    Google Scholar 

  5. Aulhorn E, Harms H (1972) Visual perimetry. In: Autrum H, Jung R, Loewenstein WR, Mackay C, Teuber HL (eds) Handbook of sensory physiology Vol. VII/4 Visual Psychophysics. Springer, Berlin, pp 102–145

  6. Bajandas FJ, Kline LB (1988) Neuro-Ophthalmology Review Manual. Slack, Thorofare, USA

  7. Bear CA, Kerrison JB, Lynn M, Newman SA, Newman NJ (2000) Stages of improvement in visual fields following pituitary tumor resection. Invest Ophthalmol Vis Sci 41 [Suppl]:313

  8. Biousse V, Mendicino ME, Simon DJ, Newman NJ (1998) The ophthalmology of intracranial vascular abnormalities. Am J Ophthalmol 125:527–544

    CAS  PubMed  Google Scholar 

  9. Birgbauer E, Oster SF, Severin CG, Sretavan DW (2001) Retinal axon growth cones respond to EphB extracellular domains as inhibitory axon guidance cues. Development 128:3041–3048

    CAS  PubMed  Google Scholar 

  10. Blamires TL, Reeves BC (1996) Vision defects in patients with peri-chiasmal lesions. Optom Vis Sci 73:572–578

    CAS  PubMed  Google Scholar 

  11. Burde RM, Savino PJ, Trobe JD (1992) Clinical decisions in neuroophthalmology. Mosby, St. Louis

  12. Bynke H (1986) Pituitary adenomas with ocular manifestations. Neuroophthalmology 6:303–311

    Google Scholar 

  13. Dannheim F (1977) Perimetrie beim Chiasmasyndrom, schwellennahe und überschwellige Reize. Klin Monatsbl Augenheilkd 171:468–477

    CAS  PubMed  Google Scholar 

  14. Deliganis AV, Geyer JR, Berger MS (1996) Prognostic significance of type 1 neurofibromatosis (von Recklinghausen disease) in childhood optic glioma. Neurosurgery 38:1114–1118

    CAS  PubMed  Google Scholar 

  15. Dureau P, Attie-Bitach T, Salomon R, Bettembourg O, Amiel J, Uteza Y, Dufier JL (2001) Renal coloboma syndrome. Ophthalmology 108:1912–1916

    CAS  PubMed  Google Scholar 

  16. Freitag H-J, Grzyska U, Zeumer H (1990) Möglichkeiten der interventionellen Neuroradiologie. Dt Ärzteblatt 87:23–27

    Google Scholar 

  17. Gittinger JW (1998) Tumors of the pituitary gland. In: Miller NR, Newman NJ (eds) Walsh & Hoyt’ s clinical neuro-ophthalmology. Williams & Wilkins, Baltimore, pp 2142–2221

  18. Glaser JS (1990) Neuro-ophthalmology, 2nd edn. Lippincott, Philadelphia

  19. Groden C, Freitag H-J (1998) Fortschritte in der ophthalmologischen Neuroradiologie. Z Prakt Augenheilkd 19:29–32

    Google Scholar 

  20. Gruss P, Walther C (1992) Pax in development. Cell 69:719–722

    CAS  PubMed  Google Scholar 

  21. Guillery RW (1991) Rules that govern the development of the pathways from the eye to the optic tract in mammals. In: Lam DM, Shatz CJ (eds) Development of the visual systems. MIT Press, Cambridge, Massachusetts, pp 153–171

  22. Guillery RW, Okoro AN, Witkop CJ Jr (1975) Abnormal visual pathways in the brain of a human albino. Brain Res 96:373–377

    CAS  PubMed  Google Scholar 

  23. Guillery RW, Mason CA, Taylor JSH (1995) Developmental determinants at the mammalian optic chiasm. J Neurosci 15:4727–4737

    CAS  PubMed  Google Scholar 

  24. Hollenhorst RW, Younge BR (1973) Ocular manifestations produced by adenomas of the pituitary gland: analysis of 1000 cases. In: Kohler PO, Ross GT (eds) Diagnosis and treatment of pituitary tumors. American Elsevier, New York, pp 53–68

  25. Holmes JM, Droste PJ, Beck RW (1998) The natural history of acute traumatic sixth nerve palsy. Invest Ophthalmol Vis Sci 39 [Suppl]:153

  26. Horton J (1995) Wilbrand’s knee 1904–1995: R.I.P. In: Hoyt WF (ed) An update in neuro-ophthalmology. UCSF, San Francisco, California, pp 27–38

  27. Hoyt WF, Luis O (1962) Visual fiber anatomy in the infrageniculate pathway of the primate. Arch Ophthalmol 68:94–106

    CAS  PubMed  Google Scholar 

  28. Huber A (1977) Chiasmasyndrome: Klinik. Klin Monatsbl Augenheilkd 170:266–278

    CAS  PubMed  Google Scholar 

  29. Huber A (1988) Homonyme Hemianopsie bei Hirntumoren. Klin Monatsbl Augenheilkd 192:543–550

    CAS  PubMed  Google Scholar 

  30. Huber A, Kömpf D (1998) Klinische Neuroophthalmologie. Thieme, Stuttgart

  31. Ikeda H, Yoshimoto T (1995) Visual disturbances in patients with pituitary adenoma. Acta Neurol Scand 92:157–160

    CAS  PubMed  Google Scholar 

  32. Jansonius NM, van der Vliet TM, Cornelissen FW, Pott JW, Kooijman AC (2001) A girl without a chiasm: electrophysiologic and MRI evidence for the absence of crossing optic nerve fibers in a girl with a congenital nystagmus. J Neuroophthalmol 21:26–29

    CAS  PubMed  Google Scholar 

  33. Jeffery G (2001) Architecture of the optic chiasm and the mechanisms that sculpt its development. Physiol Rev 81:1393–1414

    CAS  PubMed  Google Scholar 

  34. Koshiba-Takeuchi K, Takeuchi JK, Matsumoto K, Momose T, Uno K, Hoepker V, Ogura K, Takahashi N, Nakamura H, Yasuda K, Ogura T (2000) Tbx5 and the retinotectum projection. Science 287:134–137

    CAS  PubMed  Google Scholar 

  35. Kupersmith MJ, Straga J, Zeiffer B, Kraker R (2001) Junctional scotoma in acute optic neuritis or inflammation of the ‘knee’. Invest Ophthalmol Vis Sci 42 [Suppl]:326

  36. Lachenmayr BJ, Buser A (1993) Refraktion und Gesichtsfeld. Der Augenarzt 27:114–120

    Google Scholar 

  37. Lagrèze WA, Kommerell G (2002) Gesichtsfeldausfälle. In: Kampik A, Grehn F (eds) Augenärztliche Differentialdiagnose. Thieme, Stuttgart, pp 160–168

  38. Legouis R, Cohen-Salmon M, Del C, I, Petit C (1994) Isolation and characterization of the gene responsible for the X chromosome-linked Kallmann syndrome. Biomed Pharmacother 48:241–246

    Google Scholar 

  39. Lim WK, Aung T, Foster PJ, Seah SK, Wu HM, Lim ATH, Lee L, Chew SJ (2000) The visual field in eyes with tilted optic discs. Invest Ophthalmol Vis Sci 41 [Suppl]:284

  40. Manor RS, Ouaknine GE, Matz S, Shalit MN (1980) Nasal visual field loss with intracranial lesions of the optic nerve pathways. Am J Ophthalmol 90:1–10

    CAS  PubMed  Google Scholar 

  41. Miller NR (1988) Walsh and Hoyt’s clinical neuro-ophthalmology, Vol 3. Williams & Wilkins, Baltimore

  42. Miller NR (1991) Walsh and Hoyt’s clinical neuro-ophthalmology. Vol. 4. William & Wilkins, Baltimore

  43. Müller M, Holländer H (1988) A small population of retinal ganglion cells projecting to the retina of the other eye. An experimental study in the rat and the rabbit. Exp Brain Res 71:611–617

    PubMed  Google Scholar 

  44. Oster SF, Sretavan DW (2003) Connecting the eye to the brain: the molecular basis of ganglion cell axon guidance. Br J Ophthalmol 87:639–645

    CAS  PubMed  Google Scholar 

  45. Sachsenweger R (1982) Tumoren des 3. Ventrikels. In: Neuroophthalmologie. Thieme, Stuttgart, pp 130–131

  46. Schatz NJ, Schlezinger NS (1976) Noncompressive causes of chiasmal disease. In: Burde RM (ed) Symposium on neuro-ophthalmology. Mosby, St. Louis pp 91–97

  47. Schiefer U, Wilhelm H (1995) Gesichtsfeld-Kompendium. Klin Monatsbl Augenheilkd 206:206–238

    CAS  PubMed  Google Scholar 

  48. Schwarz M, Cecconi F, Bernier G, Andrejewski N, Kammandel B, Wagner M, Gruss P (2000) Spatial specification of mammalian eye territories by reciprocal transcriptional repression of Pax2 and Pax6. Development 127:4325–4334

    CAS  PubMed  Google Scholar 

  49. Silver J (1984) Studies on the factors that govern directionality of axonal growth in the embryonic optic nerve and at the chiasm of mice. J Comp Neurol 223:238–251

    CAS  PubMed  Google Scholar 

  50. Stangel M, Vogeley KT, Jandeck C, Boegner F, Marx P, Koch HC (1998) Septooptische Dysplasie (de-Morsier-Syndrom). Nervenarzt 69:352–356

    Article  CAS  PubMed  Google Scholar 

  51. Thanos S (1999) Genesis, neurotrophin responsiveness, and apoptosis of a pronounced direct connection between the two eyes of the chick embryo: a natural error or a meaningful developmental event? J Neurosci 19:3900–3917

    CAS  PubMed  Google Scholar 

  52. Trobe JD, Tao HH, Schuster JJ (1984) Perichiasmal tumors: diagnostic and prognostic features. Neurosurgery 15:391–399

    CAS  PubMed  Google Scholar 

  53. Viggiano D, Pirolo L, Cappabianca S, Passiatore C (2002) Testing the model of optic chiasm formation in human beings. Brain Res Bull 59:111–115

    PubMed  Google Scholar 

  54. Walsh TJ (1996) Visual fields. Examination and interpretation, 2nd edn. American Academy of Ophthalmology, San Francisco

  55. Wilbrand HL (1926) Schema des Verlaufs der Sehnervenfasern durch das Chiasma. Z Prakt Augenheilkd 59:135–144

    Google Scholar 

  56. Wilbrand H, Saenger A (1904) Die Neurologie des Auges. Bergmann, Wiesbaden

  57. Williams RW, Borodkin M, Rakic P (1991) Growth cone distribution patterns in the optic nerve of fetal monkeys: implications for mechanisms of axon guidance. J Neurosci 11:1081–1094

    CAS  PubMed  Google Scholar 

  58. Yuanxiu L, Hua G, Yong Z (1994) Vascular architecture of the human optic chiasma and bitemporal hemianopia. Chin Med Sci J 9:38–44

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Schiefer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiefer, U., Isbert, M., Mikolaschek, E. et al. Distribution of scotoma pattern related to chiasmal lesions with special reference to anterior junction syndrome. Graefe's Arch Clin Exp Ophthalmol 242, 468–477 (2004). https://doi.org/10.1007/s00417-004-0863-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-004-0863-5

Keywords

Navigation