Skip to main content

Advertisement

Log in

Regional differences and post-mortem stability of enzymatic activities in the retinal pigment epithelium

  • Laboratory Investigation
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

The retinal pigment epithelium (RPE) is essential for the metabolism of the neural retina. As a result of dysfunction of the RPE, retinal degeneration occurs. A potential treatment for certain forms of retinal degenerations is transplantation of RPE cells. To determine optimal conditions for treatment of donor eyes before transplantation, activities of key proteases (aminopeptidase M, dipeptidylpeptidase II and IV and γ-glutamyltranspeptidase) as indicators of RPE cell quality (viability and functional state) were measured.

Methods

Protease activities were quantified in bovine RPE cells from different regions of the eyecup, after different times of storage of the bulbi, cryopreservation of the RPE cells and in RPE cell cultures. The distribution of the activities was compared to the pigmentation of the RPE cells, the thickness of the choroid and photoreceptor density.

Results

Most proteases showed regional maxima. Prolonged storage of the bulbi decreased γ-glutamyltranspeptidase and aminopeptidase M activities. Cryopreservation of the RPE cells for up to 6 weeks caused no loss in the enzymatic activities. Culture of RPE cells caused pronounced decreases in the activities of γ-glutamyltranspeptidase and dipeptidylpeptidase IV. Storage of the bulbi at 4°C for more than 50 h causes marked loss of enzymatic activities in RPE cells.

Conclusion

The decrease in γ-glutamyltranspeptidase activity may be especially important because the RPE is exposed to high concentrations of reactive oxygen species. Whole bulbi should be stored for less than 50 h, but isolated RPE cells may be stored at −80°C for weeks. Propagation of RPE cells by culture increases cell number; this effect may be counteracted by a decrease in the function of these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3a–d.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. Algvere PV, Berglin L, Gouras P, Sheng Y (1994) Transplantation of fetal retinal pigment epithelium in age-related macular degeneration with subfoveal neovascularization. Graefes Arch Clin Exp Ophthalmol 232:707–716

    CAS  PubMed  Google Scholar 

  2. Bok D (1993) The retinal pigment epithelium: a versatile partner in vision. J Cell Sci Suppl 17:189–195

    CAS  PubMed  Google Scholar 

  3. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  4. Burke JM, Twining SS (1988) Regional comparisons of cathepsin D activity in bovine pigment epithelium. Invest Ophthalmol Vis Sci 29:1789–1793

    CAS  PubMed  Google Scholar 

  5. Cabral L, Unger W, Boulton M, Lightfoot R, McKechnie N, Grierson I, Marshall J (1990) Regional distribution of lysosomal enzymes in the canine retinal pigment epithelium. Invest Ophthalmol Vis Sci 31:670–676

    CAS  PubMed  Google Scholar 

  6. Cai J, Nelson KC, Wu M, Sternberg P, Jr., Jones DP (2000) Oxidative damage and protection of the RPE. Prog Retin Eye Res 19:205–221

    Article  CAS  PubMed  Google Scholar 

  7. Castillo BV, Jr., del Cerro M, White RM, Cox C, Wyatt J, Nadiga G, del Cerro C (1997) Efficacy of nonfetal human RPE for photoreceptor rescue: a study in dystrophic RCS rats. Exp Neurol 146:1-9

    Article  PubMed  Google Scholar 

  8. D'Amico DJ, Dryja TP, Tyo MA, Craft JL, Albert DM (1982) Mass cultivation of bovine ocular pigment epithelial cells in microcarrier suspension culture. Invest Ophthalmol Vis Sci 23:332–339

    CAS  PubMed  Google Scholar 

  9. De La Paz M, Anderson RE (1992) Region and age-dependent variation in susceptibility of the human retina to lipid peroxidation. Invest Ophthalmol Vis Sci 33:3497–3499

    PubMed  Google Scholar 

  10. Durlu YK, Tamai M (1997) Transplantation of retinal pigment epithelium using viable cryopreserved cells. Cell Transplant 6:149–162

    Article  CAS  PubMed  Google Scholar 

  11. Enzmann V, Stadler M, Wiedemann P, Kohen L (1998) In-vitro methods to decrease MHC class II-positive cells in retinal pigment epithelium cell grafts. Ocul Immunol Inflamm 6:145–153

    Article  CAS  PubMed  Google Scholar 

  12. Fröhlich E, Klessen C (2000) Glutamine synthetase and marker enzymes of the blood-retina barrier in fetal bovine retinal pigment epithelial cells. Graefe's Arch Clin Exp Ophthalmol 238:500–507

    Google Scholar 

  13. Fröhlich E, Klessen C (2001) Enzymatic heterogeneity of bovine retinal pigment epithelial cells in vivo and in vitro. Graefe's Arch Clin Exp Ophthalmol 239:25–34

    Article  Google Scholar 

  14. Hauswirth WW, Langerijt AV, Timmers AM, Adamus G, Ulshafer RJ (1992) Early expression and localization of rhodopsin and interphotoreceptor retinoid-binding protein (IRBP) in the developing fetal bovine retina. Exp Eye Res 54:661–670

    CAS  PubMed  Google Scholar 

  15. Hayasaka S, Hara S, Mizuno K (1975) Degradation of rod outer segment proteins by cathepsin D. J Biochem Tokyo 78:1365–1367

    CAS  PubMed  Google Scholar 

  16. Hersh LB, Aboukhair N, Watson S (1987) Immunohistochemical localization of aminopeptidase M in rat brain and periphery: relationship of enzyme localization and enkephalin metabolism. Peptides 8:523–532

    Article  CAS  PubMed  Google Scholar 

  17. Korte GE, Reppucci V, Henkind P (1984) RPE destruction causes choriocapillary atrophy. Invest. Ophthalmol Vis Sci 25:1135–1145

    CAS  Google Scholar 

  18. Krebs W (1981) Die Retina des Rindes. Parey, Berlin

  19. Kugler P, Wolf G, Scherberich J (1985) Histochemical demonstration of peptidases in the human kidney. Histochemistry 83:337–341

    CAS  PubMed  Google Scholar 

  20. McDonald JK, Schwabe C (1980) Dipeptidyl peptidase II of bovine dental pulp. Initial demonstration and characterization as a fibroblastic, lysosomal peptidase of the serine class active on collagen-related peptides. Biochim Biophys Acta 616:68–81

    CAS  PubMed  Google Scholar 

  21. Meister A, Tate SS (1976) Glutathione and related gamma-glutamyl compounds: biosynthesis and utilization. Ann Rev Biochem 45:559–604

    CAS  PubMed  Google Scholar 

  22. Mieziewska KE, van Veen T, Murray JM, Aguirre GD (1991) Rod and cone specific domains in the interphotoreceptor matrix. J Comp Neurol 308:371–380

    CAS  PubMed  Google Scholar 

  23. Ophir A, Chevion M (1992) A possible role of free radicals in the transplantation of retinal pigment epithelial cells. Ophthalmic Surg 23:284–297

    CAS  PubMed  Google Scholar 

  24. Sannes PL, Schofield BH, McDonald DF (1986) Histochemical localization of cathepsin B, dipeptidyl peptidase I, and dipeptidyl peptidase II in rat bone. J Histochem Cytochem 34:983–988

    CAS  PubMed  Google Scholar 

  25. Sarna T (1992) Properties and function of the ocular melanin--a photobiophysical view. J Photochem Photobiol B 12:215–258

    Article  CAS  PubMed  Google Scholar 

  26. Schnabel R, Bernstein HG, Luppa H, Lojda Z, Barth A (1992) Aminopeptidases in the circumventricular organs of the mouse brain: a histochemical study. Neuroscience 47:431–438

    CAS  PubMed  Google Scholar 

  27. Sedo A, Frepela E, Kasafirik E (1989) A kinetic assay for dipeptidyl peptidase IV in viable human blood mononuclear cells. Biochimie 71:757–761

    Article  CAS  PubMed  Google Scholar 

  28. Sinha P, Gossrau R (1984) Isoelectric focusing (IEF) and band detection with fluorogenic protease substrates. Histochemistry 81:167–169

    CAS  PubMed  Google Scholar 

  29. Sternberg P, Jr., Davidson PC, Jones DP, Hagen TM, Reed RL, Drews-Botsch C (1993) Protection of retinal pigment epithelium from oxidative injury by glutathione and precursors. Invest Ophthalmol Vis Sci 34:3661–3668

    PubMed  Google Scholar 

  30. Tate DJ Jr, Miceli MV, Newsome DA (1995) Phagocytosis and H2O2 induce catalase and metallothionein gene expression in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 36:1271–1279

    PubMed  Google Scholar 

  31. Terashima H, Wong H, Kobayashi R, Bunnett NW (1992) Immunochemical localization of aminopeptidase M in the alimentary tract of the guinea pig and rat. Gastroenterology 102:1867–1876

    CAS  PubMed  Google Scholar 

  32. Tezel TH, Del Priore LV, Kaplan HJ (1997) Harvest and storage of adult human retinal pigment epithelial sheets. Curr Eye Res 16:802–809

    Google Scholar 

  33. Vanderlaan M, Phares W (1981) Gamma-glutamyltranspeptidase: a tumour cell marker with a pharmacological function. Histochem J 13:865–877

    CAS  PubMed  Google Scholar 

  34. Winkler BS, Boulton ME, Gottsch JD, Sternberg P (1999) Oxidative damage and age-related macular degeneration. Mol Vis 5:32

    CAS  PubMed  Google Scholar 

  35. Zarbin MA (1998) Age-related macular degeneration: review of pathogenesis. Eur J Ophthalmol 8:199–206

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Elke Maier for excellent technical assistance. The work was supported by fortüne (808-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleonore Fröhlich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fröhlich, E., Klessen, C. Regional differences and post-mortem stability of enzymatic activities in the retinal pigment epithelium. Graefe's Arch Clin Exp Ophthalmol 241, 385–393 (2003). https://doi.org/10.1007/s00417-003-0640-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-003-0640-x

Keywords

Navigation