Skip to main content
Log in

Impact of GBA variants on longitudinal freezing of gait progression in early Parkinson’s disease

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background

Freezing of gait (FOG) is a common disabling gait disturbance among patients with Parkinson’s disease (PD), but the influence of genetic variants on the incidence of FOG has been poorly studied to date.

Objectives

We aimed to evaluate the association of GBA variants with the risk of FOG development in a large early PD cohort.

Methods

This study included 371 early PD patients from the Parkinson’s Progression Markers Initiative (PPMI) who were divided into a GBA variant carrier group (GBA-PD group, n = 44) and an idiopathic PD group without GBA variants (iPD group, n = 327). They were followed up for up to 5 years to examine the progression of FOG. The cumulative incidence of FOG and risk factors for FOG were assessed using Kaplan‒Meier and Cox regression analyses.

Results

At baseline, the GBA-PD group had lower CSF β-amyloid 1–42 (Aβ42) levels and more severe motor and nonmotor symptoms than the iPD group. During the 5-year follow-up, the GBA-PD group had a higher incidence of FOG than the iPD group, and the FOG progression rate was related to GBA variant severity. In the multivariable Cox model without CSF Aβ42, GBA variants were significant predictors of future FOG, and the association remained significant after adding CSF Aβ42 to the model. In the subgroup analyses, the effect of GBA variants was not observed in the “low-level” group. However, in the “high-level” group, GBA variants independently increased the risk of FOG, and this association was stronger than the association with CSF Aβ42.

Conclusion

GBA variants are novel genetic risk factors for future FOG development in early PD patients. This association seemed to be mediated by both Aβ-dependent pathways and Aβ-independent pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data used in this study was downloaded from the Parkinsons Progression Markers Initiative (PPMI) database (https://adni.loni.usc.edu/) through a standard application process. For up-to-date information on the study, please visit https://adni.loni.usc.edu/.

References

  1. Nutt J, Bloem B, Giladi N, Hallett M, Horak F, Nieuwboer A (2011) Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol 10:734–744

    Article  PubMed  PubMed Central  Google Scholar 

  2. Perez-Lloret S, Negre-Pages L, Damier P, Delval A, Derkinderen P, Destée A, Meissner W, Schelosky L, Tison F, Rascol O (2014) Prevalence, determinants, and effect on quality of life of freezing of gait in Parkinson disease. JAMA Neurol 71:884–890

    Article  PubMed  Google Scholar 

  3. Jung J, Kim B, Chung S, Yoo H, Lee Y, Baik K, Ye B, Sohn Y, Lee J, Lee P (2020) Motor cerebellar connectivity and future development of freezing of gait in de novo Parkinson’s disease. Move Disord 35:2240–2249

    Article  Google Scholar 

  4. Nonnekes J, Snijders AH, Nutt JG, Deuschl G, Giladi N, Bloem BR (2015) Freezing of gait: a practical approach to management. Lancet Neurol 14:768–778

    Article  PubMed  Google Scholar 

  5. Kim R, Lee J, Kim HJ, Kim A, Jang M, Jeon B, Kang UJ (2019) CSF β-amyloid(42) and risk of freezing of gait in early Parkinson disease. Neurology 92:e40–e47

    Article  CAS  PubMed  Google Scholar 

  6. Gao C, Liu J, Tan Y, Chen S (2020) Freezing of gait in Parkinson’s disease: pathophysiology, risk factors and treatments. Transl Neurodegener 9:12

    Article  PubMed  PubMed Central  Google Scholar 

  7. Weiss D, Schoellmann A, Fox M, Bohnen N, Factor S, Nieuwboer A, Hallett M, Lewis S (2020) Freezing of gait: understanding the complexity of an enigmatic phenomenon. Brain 143:14–30

    Article  PubMed  Google Scholar 

  8. Wang F, Pan Y, Zhang M, Hu K (2022) Predicting the onset of freezing of gait in Parkinson’s disease. BMC Neurol 22:213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim R, Lee J, Kim Y, Kim A, Jang M, Kim H, Jeon B, Kang U, Fahn S (2018) Presynaptic striatal dopaminergic depletion predicts the later development of freezing of gait in de novo Parkinson’s disease: an analysis of the PPMI cohort. Parkinsonism Relat Disord 51:49–54

    Article  PubMed  Google Scholar 

  10. Vercruysse S, Devos H, Munks L, Spildooren J, Vandenbossche J, Vandenberghe W, Nieuwboer A, Heremans E (2012) Explaining freezing of gait in Parkinson’s disease: motor and cognitive determinants. Mov Disord 27:1644–1651

    Article  PubMed  Google Scholar 

  11. Iansek R, Danoudis M (2017) Freezing of gait in Parkinson’s disease: its pathophysiology and pragmatic approaches to management. Mov Disord Clin Pract 4:290–297

    Article  PubMed  Google Scholar 

  12. Galvagnion C, Marlet F, Cerri S, Schapira A, Blandini F, Di Monte D (2022) Sphingolipid changes in Parkinson L444P GBA mutation fibroblasts promote α-synuclein aggregation. Brain 145:1038–1051

    Article  PubMed  PubMed Central  Google Scholar 

  13. Vázquez-Vélez G, Zoghbi H (2021) Parkinson’s disease genetics and pathophysiology. Annu Rev Neurosci 44:87–108

    Article  PubMed  Google Scholar 

  14. Sidransky E, Nalls M, Aasly J, Aharon-Peretz J, Annesi G, Barbosa E, Bar-Shira A, Berg D, Bras J, Brice A, Chen C, Clark L, Condroyer C, De Marco E, Dürr A, Eblan M, Fahn S, Farrer M, Fung H, Gan-Or Z, Gasser T, Gershoni-Baruch R, Giladi N, Griffith A, Gurevich T, Januario C, Kropp P, Lang A, Lee-Chen G, Lesage S, Marder K, Mata I, Mirelman A, Mitsui J, Mizuta I, Nicoletti G, Oliveira C, Ottman R, Orr-Urtreger A, Pereira L, Quattrone A, Rogaeva E, Rolfs A, Rosenbaum H, Rozenberg R, Samii A, Samaddar T, Schulte C, Sharma M, Singleton A, Spitz M, Tan E, Tayebi N, Toda T, Troiano A, Tsuji S, Wittstock M, Wolfsberg T, Wu Y, Zabetian C, Zhao Y, Ziegler S (2009) Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med 361:1651–1661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Neumann J, Bras J, Deas E, O’Sullivan S, Parkkinen L, Lachmann R, Li A, Holton J, Guerreiro R, Paudel R, Segarane B, Singleton A, Lees A, Hardy J, Houlden H, Revesz T, Wood N (2009) Glucocerebrosidase mutations in clinical and pathologically proven Parkinson’s disease. Brain 132:1783–1794

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhang Y, Shu L, Zhou X, Pan H, Xu Q, Guo J, Tang B, Sun Q (2018) GBAA meta-analysis of -related clinical symptoms in Parkinson’s disease. Parkinson’s Dis 2018:3136415

    Google Scholar 

  17. Petrucci S, Ginevrino M, Trezzi I, Monfrini E, Ricciardi L, Albanese A, Avenali M, Barone P, Bentivoglio A, Bonifati V, Bove F, Bonanni L, Brusa L, Cereda C, Cossu G, Criscuolo C, Dati G, De Rosa A, Eleopra R, Fabbrini G, Fadda L, Garbellini M, Minafra B, Onofrj M, Pacchetti C, Palmieri I, Pellecchia M, Petracca M, Picillo M, Pisani A, Vallelunga A, Zangaglia R, Di Fonzo A, Morgante F, Valente E (2020) GBA-related Parkinson’s disease: dissection of genotype-phenotype correlates in a large Italian cohort. Mov Disord 35:2106–2111

    Article  CAS  PubMed  Google Scholar 

  18. Brockmann K, Srulijes K, Pflederer S, Hauser A, Schulte C, Maetzler W, Gasser T, Berg D (2015) GBA-associated Parkinson’s disease: reduced survival and more rapid progression in a prospective longitudinal study. Mov Disord 30:407–411

    Article  CAS  PubMed  Google Scholar 

  19. Alcalay R, Caccappolo E, Mejia-Santana H, Tang M, Rosado L, Orbe Reilly M, Ruiz D, Ross B, Verbitsky M, Kisselev S, Louis E, Comella C, Colcher A, Jennings D, Nance M, Bressman S, Scott W, Tanner C, Mickel S, Andrews H, Waters C, Fahn S, Cote L, Frucht S, Ford B, Rezak M, Novak K, Friedman J, Pfeiffer R, Marsh L, Hiner B, Siderowf A, Payami H, Molho E, Factor S, Ottman R, Clark L, Marder K (2012) Cognitive performance of GBA mutation carriers with early-onset PD: the CORE-PD study. Neurology 78:1434–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Malek N, Weil R, Bresner C, Lawton M, Grosset K, Tan M, Bajaj N, Barker R, Burn D, Foltynie T, Hardy J, Wood N, Ben-Shlomo Y, Williams N, Grosset D, Morris H (2018) GBAFeatures of -associated Parkinson’s disease at presentation in the UK study. J Neurol Neurosurg Psychiatry 89:702–709

    Article  PubMed  Google Scholar 

  21. Szwedo AA, Dalen I, Pedersen KF, Camacho M, Backstrom D, Forsgren L, Tzoulis C, Winder-Rhodes S, Hudson G, Liu G, Scherzer CR, Lawson RA, Yarnall AJ, Williams-Gray CH, Macleod AD, Counsell CE, Tysnes OB, Alves G, Maple-Grodem J, Parkinson’s Incidence Cohorts C (2022) GBA and APOE impact cognitive decline in Parkinson’s disease: a 10-year population-based study. Mov Disord 37:1016–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Morris R, Martini DN, Ramsey K, Kelly VE, Smulders K, Hiller A, Chung KA, Hu SC, Zabetian CP, Poston KL, Mata IF, Edwards KL, Lapidus J, Cholerton B, Montine TJ, Quinn JF, Horak F (2022) Cognition as a mediator for gait and balance impairments in GBA-related Parkinson’s disease. NPJ Parkinsons Dis 8:78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Choi S, Kim D, Kam TI, Yun S, Kim S, Park H, Hwang H, Pletnikova O, Troncoso JC, Dawson VL, Dawson TM, Ko HS (2015) Lysosomal enzyme glucocerebrosidase protects against abeta1-42 oligomer-induced neurotoxicity. PLoS ONE 10:e0143854

    Article  PubMed  PubMed Central  Google Scholar 

  24. Brockmann K, Schulte C, Deuschle C, Hauser AK, Heger T, Gasser T, Maetzler W, Berg D (2015) Neurodegenerative CSF markers in genetic and sporadic PD: classification and prediction in a longitudinal study. Parkinsonism Relat Disord 21:1427–1434

    Article  PubMed  Google Scholar 

  25. Caminiti S, Carli G, Avenali M, Blandini F, Perani D (2021) Clinical and dopamine transporter imaging trajectories in a cohort of Parkinson’s disease patients with GBA mutations. Mov Disord 37:106–118

    Article  PubMed  Google Scholar 

  26. Nalls MA, Keller MF, Hernandez DG, Chen L, Stone DJ, Singleton AB (2016) Baseline genetic associations in the Parkinson’s Progression Markers Initiative (PPMI). Mov Disord 31:79–85

    Article  CAS  PubMed  Google Scholar 

  27. Davis M, Johnson C, Leverenz J, Weintraub D, Trojanowski J, Chen-Plotkin A, Van Deerlin V, Quinn J, Chung K, Peterson-Hiller A, Rosenthal L, Dawson T, Albert M, Goldman J, Stebbins G, Bernard B, Wszolek Z, Ross O, Dickson D, Eidelberg D, Mattis P, Niethammer M, Yearout D, Hu S, Cholerton B, Smith M, Mata I, Montine T, Edwards K, Zabetian C (2016) Association of GBA mutations and the E326K polymorphism with motor and cognitive progression in Parkinson disease. JAMA Neurol 73:1217–1224

    Article  PubMed  PubMed Central  Google Scholar 

  28. Thaler A, Bregman N, Gurevich T, Shiner T, Dror Y, Zmira O, Gan-Or Z, Bar-Shira A, Gana-Weisz M, Orr-Urtreger A, Giladi N, Mirelman A (2018) Parkinson’s disease phenotype is influenced by the severity of the mutations in the GBA gene. Parkinsonism Relat Disord 55:45–49

    Article  PubMed  Google Scholar 

  29. Simuni T, Brumm M, Uribe L, Caspell-Garcia C, Coffey C, Siderowf A, Alcalay R, Trojanowski J, Shaw L, Seibyl J, Singleton A, Toga A, Galasko D, Foroud T, Nudelman K, Tosun-Turgut D, Poston K, Weintraub D, Mollenhauer B, Tanner C, Kieburtz K, Chahine L, Reimer A, Hutten S, Bressman S, Marek K (2020) Clinical and dopamine transporter imaging characteristics of leucine rich repeat kinase 2 (LRRK2) and glucosylceramidase beta (GBA) Parkinson’s disease participants in the Parkinson’s progression markers initiative: a cross-sectional study. Mov Disord 35:833–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang C, Cai Y, Gu Z, Ma J, Zheng Z, Tang BS, Xu Y, Zhou Y, Feng T, Wang T, Chen SD, Chan P, Chinese Parkinson Study G (2014) Clinical profiles of Parkinson’s disease associated with common leucine-rich repeat kinase 2 and glucocerebrosidase genetic variants in Chinese individuals. Neurobiol Aging 35(725):e721-726

    Google Scholar 

  31. Mihaescu AS, Valli M, Uribe C, Diez-Cirarda M, Masellis M, Graff-Guerrero A, Strafella AP (2022) Beta amyloid deposition and cognitive decline in Parkinson’s disease: a study of the PPMI cohort. Mol Brain 15:79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Leocadi M, Canu E, Donzuso G, Stojkovic T, Basaia S, Kresojević N, Stankovic I, Sarasso E, Piramide N, Tomic A, Markovic V, Petrovic I, Stefanova E, Kostic V, Filippi M, Agosta F (2021) Longitudinal clinical, cognitive, and neuroanatomical changes over 5 years in GBA-positive Parkinson's disease patients. J Neurol

  33. Kim R, Shin J, Park S, Kim H, Jeon B (2020) Apolipoprotein E ε4 genotype and risk of freezing of gait in Parkinson’s disease. Parkinsonism Relat Disord 81:173–178

    Article  PubMed  Google Scholar 

  34. Sardi S, Cheng S, Shihabuddin L (2015) Gaucher-related synucleinopathies: the examination of sporadic neurodegeneration from a rare (disease) angle. Prog Neurobiol 125:47–62

    Article  CAS  PubMed  Google Scholar 

  35. Blandini F, Cilia R, Cerri S, Pezzoli G, Schapira A, Mullin S, Lanciego J (2019) Glucocerebrosidase mutations and synucleinopathies: toward a model of precision medicine. Mov Disord 34:9–21

    Article  PubMed  Google Scholar 

  36. Lerche S, Schulte C, Wurster I, Machetanz G, Roeben B, Zimmermann M, Deuschle C, Hauser A, Böhringer J, Krägeloh-Mann I, Waniek K, Lachmann I, Petterson X, Chiang R, Park H, Wang B, Liepelt-Scarfone I, Maetzler W, Galasko D, Scherzer C, Gasser T, Mielke M, Hutten S, Mollenhauer B, Sardi S, Berg D, Brockmann K (2021) The mutation matters: CSF profiles of GCase, sphingolipids, α-synuclein in PD. Mov Disord 36:1216–1228

    Article  CAS  PubMed  Google Scholar 

  37. Avenali M, Blandini F, Cerri S (2020) Glucocerebrosidase defects as a major risk factor for Parkinson’s disease. Front Aging Neurosci 12:97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Behl T, Kaur G, Fratila O, Buhas C, Judea-Pusta C, Negrut N, Bustea C, Bungau S (2021) Cross-talks among GBA mutations, glucocerebrosidase, and α-synuclein in GBA-associated Parkinson’s disease and their targeted therapeutic approaches: a comprehensive review. Transl Neurodegener 10:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Data used in the preparation of this article were obtained from the Parkinson’s Progression Markers Initiative (PPMI) database (www.ppmi-info.org/data). For up-to-date information on the study, visit www.ppmi-info.org. PPMI (a public–private partnership) was funded by the Michael J. Fox Foundation for Parkinson’s Research and multiple funding partners, including AbbVie, Avid, Biogen, Bristol-Myers Squibb, Covance, GE Healthcare, Genentech, GlaxoSmithKline, Lilly, Lundbeck, Merck, Meso Scale Discovery, Pfizer, Piramal, Roche, Servier, Teva, and UCB. The authors should thank the Department of Translational Medicine Center of the First Affiliated Hospital of Zhengzhou University for their technical support.

Funding

This study was supported by grants from the China Postdoctoral Science Foundation funded project (No. 2021M702945), the Henan Medical Science and Technology Joint Building Program (No. LHGJ20210300) and the starting fund for postdoctoral research of the First Affiliated Hospital of Zhengzhou University to Nannan Yang, the National Natural Science Foundation of China (No. 82101940 to Shushan Sang and No. 81971175 to Hong Lu).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nannan Yang or Hong Lu.

Ethics declarations

Conflicts of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical standard statement

The data were retrieved from the PPMI, an online database that provides de-identifed clinical data. That study was conducted in accordance with the Declaration of Helsinki and the Good Clinical Practice (GCP) guidelines after approval of the local ethics committees of the participating sites. For up-to-date information on the study, visit https://adni.loni.usc.edu/.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 559 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, N., Sang, S., Peng, T. et al. Impact of GBA variants on longitudinal freezing of gait progression in early Parkinson’s disease. J Neurol 270, 2756–2764 (2023). https://doi.org/10.1007/s00415-023-11612-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-023-11612-6

Keywords

Navigation