Skip to main content

Advertisement

Log in

Longitudinal study of multi-parameter quantitative magnetic resonance imaging in Duchenne muscular dystrophy: hyperresponsiveness of gluteus maximus and detection of subclinical disease progression in functionally stable patients

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Objective

To describe the disease progression of Duchenne muscular dystrophy (DMD) in the pelvic and thigh muscles over 1-year using multiple-parameter quantitative magnetic resonance imaging (qMRI), and to determine the most responsive muscle and predict subclinical disease progression in functionally stable patients.

Methods

Fifty-four DMD patients (mean age 8.9 ± 2.5, range 5–15 years) completed baseline and 1-year follow-up qMRI examinations/biomarkers [3-point Dixon/fat fraction (FF); T1 mapping/T1; T2 mapping/T2]. Meanwhile, clinical assessments [NorthStar ambulatory assessment (NSAA) score] and timed function tests were performed in DMD patients. Twenty-four healthy male controls (range 5–15 years) accomplished baseline qMRI examinations. Group differences were compared using the Wilcoxon test. The standardized response mean (SRM) was taken as the responsiveness to the disease progression index.

Results

FF, T1, and T2 in all DMD age subgroups changed significantly over 1-year (P < 0.05). Even in functionally stable patients (NSAA score increased, unchanged, or decreased by 1-point) over 1-year, significant increases in FF and T2 and decreases in T1 were observed in gluteus maximus (GMa), gluteus medius, vastus lateralis, and adductor magnus (P < 0.05). Overall, the SRM of FF, T1, and T2 was all the highest in GMa, which were 1.25, − 0.92, and 0.93, respectively.

Conclusions

qMRI biomarkers are responsive to disease progression and can also detect subclinical disease progression in functionally stable DMD patients over 1-year. GMa is the most responsive to disease progression of all the muscles analyzed.

Trial registration

Chinese Clinical Trial Registry (http://www.chictr.org.cn/index.aspx) ChiCTR1800018340, 09/12/2018, prospectively registered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Duan D, Goemans N, Takeda S, Mercuri E, Aartsma-Rus A (2021) Duchenne muscular dystrophy. Nat Rev Dis Primers 7:13. https://doi.org/10.1038/s41572-021-00248-3

    Article  PubMed  Google Scholar 

  2. Mercuri E, Bönnemann CG, Muntoni F (2019) Muscular dystrophies. Lancet 394:2025–2038. https://doi.org/10.1016/s0140-6736(19)32910-1

    Article  PubMed  Google Scholar 

  3. Birnkrant DJ, Bello L, Butterfield RJ et al (2022) Cardiorespiratory management of Duchenne muscular dystrophy: emerging therapies, neuromuscular genetics, and new clinical challenges. Lancet Respir Med 10:403–420. https://doi.org/10.1016/s2213-2600(21)00581-6

    Article  PubMed  Google Scholar 

  4. Tsuda T (2018) Clinical Manifestations and overall management strategies for Duchenne muscular dystrophy. Methods Mol Biol 1687:19–28. https://doi.org/10.1007/978-1-4939-7374-3_2

    Article  CAS  PubMed  Google Scholar 

  5. Nascimento Osorio A, Medina Cantillo J, Camacho Salas A, Madruga Garrido M, Vilchez Padilla JJ (2019) Consensus on the diagnosis, treatment and follow-up of patients with Duchenne muscular dystrophy. Neurologia (Engl Ed). 34:469–481. https://doi.org/10.1016/j.nrl.2018.01.001

    Article  CAS  PubMed  Google Scholar 

  6. Dahlqvist JR, Widholm P, Leinhard OD, Vissing J (2020) MRI in neuromuscular diseases: an emerging diagnostic tool and biomarker for prognosis and efficacy. Ann Neurol 88:669–681. https://doi.org/10.1002/ana.25804

    Article  PubMed  Google Scholar 

  7. Hogrel JY, Wary C, Moraux A et al (2016) Longitudinal functional and NMR assessment of upper limbs in Duchenne muscular dystrophy. Neurology 86:1022–1030. https://doi.org/10.1212/wnl.0000000000002464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Willcocks RJ, Rooney WD, Triplett WT et al (2016) Multicenter prospective longitudinal study of magnetic resonance biomarkers in a large duchenne muscular dystrophy cohort. Ann Neurol 79:535–547. https://doi.org/10.1002/ana.24599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Barnard AM, Willcocks RJ, Triplett WT et al (2020) MR biomarkers predict clinical function in Duchenne muscular dystrophy. Neurology 94:e897–e909. https://doi.org/10.1212/wnl.0000000000009012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nagy S, Schädelin S, Hafner P et al (2020) Longitudinal reliability of outcome measures in patients with Duchenne muscular dystrophy. Muscle Nerve 61:63–68. https://doi.org/10.1002/mus.26690

    Article  PubMed  Google Scholar 

  11. Kim HK, Laor T, Horn PS, Racadio JM, Wong B, Dardzinski BJ (2010) T2 mapping in Duchenne muscular dystrophy: distribution of disease activity and correlation with clinical assessments. Radiology 255:899–908. https://doi.org/10.1148/radiol.10091547

    Article  PubMed  Google Scholar 

  12. Godi C, Ambrosi A, Nicastro F et al (2016) Longitudinal MRI quantification of muscle degeneration in Duchenne muscular dystrophy. Ann Clin Transl Neurol 3:607–622. https://doi.org/10.1002/acn3.319

    Article  PubMed  PubMed Central  Google Scholar 

  13. Marden FA, Connolly AM, Siegel MJ, Rubin DA (2005) Compositional analysis of muscle in boys with Duchenne muscular dystrophy using MR imaging. Skelet Radiol. 34:140–148. https://doi.org/10.1007/s00256-004-0825-3

    Article  Google Scholar 

  14. Mercuri E, Pichiecchio A, Allsop J, Messina S, Pane M, Muntoni F (2007) Muscle MRI in inherited neuromuscular disorders: past, present, and future. J Magn Reson Imaging 25:433–440. https://doi.org/10.1002/jmri.20804

    Article  PubMed  Google Scholar 

  15. Kim HK, Merrow AC, Shiraj S, Wong BL, Horn PS, Laor T (2013) Analysis of fatty infiltration and inflammation of the pelvic and thigh muscles in boys with Duchenne muscular dystrophy (DMD): grading of disease involvement on MR imaging and correlation with clinical assessments. Pediatr Radiol 43:1327–1335. https://doi.org/10.1007/s00247-013-2696-z

    Article  PubMed  Google Scholar 

  16. Peng F, Xu H, Song Y et al (2022) Utilization of T1-mapping for the pelvic and thigh muscles in Duchenne muscular dystrophy: a quantitative biomarker for disease involvement and correlation with clinical assessments. BMC Musculoskelet Disord 23:681. https://doi.org/10.1186/s12891-022-05640-y

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ropars J, Gravot F, Ben Salem D, Rousseau F, Brochard S, Pons C (2020) Muscle MRI: a biomarker of disease severity in Duchenne muscular dystrophy? A systematic review. Neurology 94:117–133. https://doi.org/10.1212/wnl.0000000000008811

    Article  PubMed  Google Scholar 

  18. Bushby K, Connor E (2011) Clinical outcome measures for trials in Duchenne muscular dystrophy: report from International Working Group meetings. Clin Investig (Lond). 1:1217–1235. https://doi.org/10.4155/cli.11.113

    Article  PubMed  PubMed Central  Google Scholar 

  19. McDonald CM, Henricson EK, Abresch RT et al (2013) The 6-minute walk test and other endpoints in Duchenne muscular dystrophy: longitudinal natural history observations over 48 weeks from a multicenter study. Muscle Nerve 48:343–356. https://doi.org/10.1002/mus.23902

    Article  PubMed  PubMed Central  Google Scholar 

  20. Scott E, Eagle M, Mayhew A et al (2012) Development of a functional assessment scale for ambulatory boys with Duchenne muscular dystrophy. Physiother Res Int 7:101–109. https://doi.org/10.1002/pri.520

    Article  Google Scholar 

  21. Ricotti V, Ridout DA, Pane M et al (2016) The NorthStar Ambulatory Assessment in Duchenne muscular dystrophy: considerations for the design of clinical trials. J Neurol Neurosurg Psychiatry 87:149–155. https://doi.org/10.1136/jnnp-2014-309405

    Article  PubMed  Google Scholar 

  22. Marty B, Carlier PG (2019) Physiological and pathological skeletal muscle T1 changes quantified using a fast inversion-recovery radial NMR imaging sequence. Sci Rep 9:6852. https://doi.org/10.1038/s41598-019-43398-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fu C, Xia Y, Meng F et al (2020) MRI quantitative analysis of eccentric exercise-induced skeletal muscle injury in rats. Acad Radiol 27:e72–e79. https://doi.org/10.1016/j.acra.2019.05.011

    Article  PubMed  Google Scholar 

  24. Muntoni F, Domingos J, Manzur AY et al (2019) Categorising trajectories and individual item changes of the North Star Ambulatory Assessment in patients with Duchenne muscular dystrophy. PLoS ONE 14:e0221097. https://doi.org/10.1371/journal.pone.0221097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Morrow JM, Sinclair CD, Fischmann A et al (2016) MRI biomarker assessment of neuromuscular disease progression: a prospective observational cohort study. Lancet Neurol 15:65–77. https://doi.org/10.1016/s1474-4422(15)00242-2

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liang MH, Fossel AH, Larson MG (1990) Comparisons of five health status instruments for orthopedic evaluation. Med Care 28:632–642. https://doi.org/10.1097/00005650-199007000-00008

    Article  CAS  PubMed  Google Scholar 

  27. Bonati U, Hafner P, Schädelin S et al (2015) Quantitative muscle MRI: a powerful surrogate outcome measure in Duchenne muscular dystrophy. Neuromuscul Disord 25:679–685. https://doi.org/10.1016/j.nmd.2015.05.006

    Article  PubMed  Google Scholar 

  28. Mankodi A, Bishop CA, Auh S, Newbould RD, Fischbeck KH, Janiczek RL (2016) Quantifying disease activity in fatty-infiltrated skeletal muscle by IDEAL-CPMG in Duchenne muscular dystrophy. Neuromuscul Disord 26:650–658. https://doi.org/10.1016/j.nmd.2016.07.013

    Article  PubMed  PubMed Central  Google Scholar 

  29. Polavarapu K, Manjunath M, Preethish-Kumar V et al (2016) Muscle MRI in Duchenne muscular dystrophy: evidence of a distinctive pattern. Neuromuscul Disord 26:768–774. https://doi.org/10.1016/j.nmd.2016.09.002

    Article  PubMed  Google Scholar 

  30. Leung DG (2019) Advancements in magnetic resonance imaging-based biomarkers for muscular dystrophy. Muscle Nerve 60:347–360. https://doi.org/10.1002/mus.26497

    Article  PubMed  PubMed Central  Google Scholar 

  31. Araujo ECA, Marty B, Carlier PG, Baudin PY, Reyngoudt H (2021) Multiexponential analysis of the water T2-relaxation in the skeletal muscle provides distinct markers of disease activity between inflammatory and dystrophic myopathies. J Magn Reson Imaging 53(1):181–189. https://doi.org/10.1002/jmri.27300

    Article  PubMed  Google Scholar 

  32. Bulluck H, Maestrini V, Rosmini S et al (2015) Myocardial T1 mapping. Circ J 79:487–494. https://doi.org/10.1253/circj.CJ-15-0054

    Article  PubMed  Google Scholar 

  33. Liu CY, Yao J, Kovacs WC et al (2021) Skeletal muscle magnetic resonance biomarkers in GNE myopathy. Neurology 96:e798–e808. https://doi.org/10.1212/wnl.0000000000011231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sherlock SP, Zhang Y, Binks M, Marraffino S (2021) Quantitative muscle MRI biomarkers in Duchenne muscular dystrophy: cross-sectional correlations with age and functional tests. Biomark Med 15:761–773. https://doi.org/10.2217/bmm-2020-0801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (Grand Nos. 81860316, 81971586, 82071874, 81901712, 821201080105); Jiangxi Provincial key Natural Science Foundation of China (20212ACB206021); Sichuan Science and Technology Program (21ZDYF1967); Clinical Research Finding of Chinese Society of Cardiovascular Disease (CSC) of 2019 (No. HFCSC2019B01); and Fellowship of China postdoctoral science foundation (2021M692290).

Author information

Authors and Affiliations

Authors

Contributions

FP and HX participated in the study design, contributed to data analysis and interpretation, statistical analysis, and drafted the main manuscript, and are the co-first authors.‍ YS and KX carried out data acquisition and contributed to image quality controlling.‍ SL contributed to editing and review of the manuscript. XC, YG, and LG participated in the whole study design, contributed to quality control of data and algorithms, editing and review of the manuscript, and are the co-corresponding authors.‍ All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Xiaotang Cai, Yingkun Guo or Lianggeng Gong.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical standard statement

This study was approved by the local Institutional Review Board and performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Informed consent

Written informed consent was acquired from all participants and guardians before study participation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, F., Xu, H., Song, Y. et al. Longitudinal study of multi-parameter quantitative magnetic resonance imaging in Duchenne muscular dystrophy: hyperresponsiveness of gluteus maximus and detection of subclinical disease progression in functionally stable patients. J Neurol 270, 1439–1451 (2023). https://doi.org/10.1007/s00415-022-11470-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-022-11470-8

Keywords

Navigation