Skip to main content

Advertisement

Log in

Unravelling the etiology of sporadic late-onset cerebellar ataxia in a cohort of 205 patients: a prospective study

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background

Despite recent progress in the field of genetics, sporadic late-onset (> 40 years) cerebellar ataxia (SLOCA) etiology remains frequently elusive, while the optimal diagnostic workup still needs to be determined. We aimed to comprehensively describe the causes of SLOCA and to discuss the relevance of the investigations.

Methods

We included 205 consecutive patients with SLOCA seen in our referral center. Patients were prospectively investigated using exhaustive clinical assessment, biochemical, genetic, electrophysiological, and imaging explorations.

Results

We established a diagnosis in 135 (66%) patients and reported 26 different causes for SLOCA, the most frequent being multiple system atrophy cerebellar type (MSA-C) (41%). Fifty-one patients (25%) had various causes of SLOCA including immune-mediated diseases such as multiple sclerosis or anti-GAD antibody-mediated ataxia; and other causes, such as alcoholic cerebellar degeneration, superficial siderosis, or Creutzfeldt–Jakob disease. We also identified 11 genetic causes in 20 patients, including SPG7 (n = 4), RFC1-associated CANVAS (n = 3), SLC20A2 (n = 3), very-late-onset Friedreich’s ataxia (n = 2), FXTAS (n = 2), SCA3 (n = 1), SCA17 (n = 1), DRPLA (n = 1), MYORG (n = 1), MELAS (n = 1), and a mitochondriopathy (n = 1) that were less severe than MSA-C (p < 0.001). Remaining patients (34%) had idiopathic late-onset cerebellar ataxia which was less severe than MSA-C (p < 0.01).

Conclusion

Our prospective study provides an exhaustive picture of the etiology of SLOCA and clues regarding yield of investigations and diagnostic workup. Based on our observations, we established a diagnostic algorithm for SLOCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mahlknecht P, Kiechl S, Bloem BR et al (2013) Prevalence and burden of gait disorders in elderly men and women aged 60–97 years: a population-based study. PLoS ONE 8:e69627. https://doi.org/10.1371/journal.pone.0069627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Muzaimi MB (2004) Population based study of late onset cerebellar ataxia in south east Wales. J Neurol Neurosurg Psychiatry 75:1129–1134. https://doi.org/10.1136/jnnp.2003.014662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Klockgether T (2010) Sporadic ataxia with adult onset: classification and diagnostic criteria. Lancet Neurol 9:94–104. https://doi.org/10.1016/S1474-4422(09)70305-9

    Article  CAS  PubMed  Google Scholar 

  4. Cortese A, Simone R, Sullivan R et al (2019) Biallelic expansion of an intronic repeat in RFC1 is a common cause of late-onset ataxia. Nat Genet 51:649–658. https://doi.org/10.1038/s41588-019-0372-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pfeffer G, Pyle A, Griffin H et al (2015) SPG7 mutations are a common cause of undiagnosed ataxia. Neurology 84:1174–1176. https://doi.org/10.1212/WNL.0000000000001369

    Article  PubMed  PubMed Central  Google Scholar 

  6. Manto M, Gandini J, Feil K, Strupp M (2020) Cerebellar ataxias: an update. Curr Opin Neurol 33:150–160. https://doi.org/10.1097/WCO.0000000000000774

    Article  PubMed  Google Scholar 

  7. Lieto M, Roca A, Santorelli FM et al (2019) Degenerative and acquired sporadic adult onset ataxia. Neurol Sci 40:1335–1342. https://doi.org/10.1007/s10072-019-03856-w

    Article  PubMed  Google Scholar 

  8. Schmitz-Hubsch T, du Montcel ST, Baliko L et al (2006) Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology 66:1717–1720. https://doi.org/10.1212/01.wnl.0000219042.60538.92

    Article  CAS  PubMed  Google Scholar 

  9. Goetz CG, Tilley BC, Shaftman SR et al (2008) Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results: MDS-UPDRS: Clinimetric Assessment. Mov Disord 23:2129–2170. https://doi.org/10.1002/mds.22340

    Article  PubMed  Google Scholar 

  10. Anheim M, Fleury M, Monga B et al (2010) Epidemiological, clinical, paraclinical and molecular study of a cohort of 102 patients affected with autosomal recessive progressive cerebellar ataxia from Alsace, Eastern France: implications for clinical management. Neurogenetics 11:1–12. https://doi.org/10.1007/s10048-009-0196-y

    Article  CAS  PubMed  Google Scholar 

  11. Bonnard C, Wirth T, Gebus O et al (2020) Clonidine GH stimulation test to differentiate MSA from idiopathic late onset cerebellar ataxia: a prospective, controlled study. J Neurol 267:855–859. https://doi.org/10.1007/s00415-020-09737-z

    Article  CAS  PubMed  Google Scholar 

  12. Carré G, Dietemann JL, Gebus O et al (2020) Brain MRI of multiple system atrophy of cerebellar type: a prospective study with implications for diagnosis criteria. J Neurol 267:1269–1277. https://doi.org/10.1007/s00415-020-09702-w

    Article  CAS  PubMed  Google Scholar 

  13. Anheim M, Lagier-Tourenne C, Stevanin G et al (2009) SPG11 spastic paraplegia: a new cause of juvenile parkinsonism. J Neurol 256:104–108. https://doi.org/10.1007/s00415-009-0083-3

    Article  PubMed  Google Scholar 

  14. Montaut S, Diedhiou N, Fahrer P et al (2021) Biallelic RFC1-expansion in a French multicentric sporadic ataxia cohort. J Neurol 268:3337–3343. https://doi.org/10.1007/s00415-021-10499-5

    Article  CAS  PubMed  Google Scholar 

  15. Gebus O, Montaut S, Monga B et al (2017) Deciphering the causes of sporadic late-onset cerebellar ataxias: a prospective study with implications for diagnostic work. J Neurol 264:1118–1126. https://doi.org/10.1007/s00415-017-8500-5

    Article  CAS  PubMed  Google Scholar 

  16. Gilman S, Wenning GK, Low PA et al (2008) Second consensus statement on the diagnosis of multiple system atrophy. Neurology 71:670–676. https://doi.org/10.1212/01.wnl.0000324625.00404.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Höglinger GU, Respondek G, Stamelou M et al (2017) Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria: MDS Clinical Diagnostic Criteria for PSP. Mov Disord 32:853–864. https://doi.org/10.1002/mds.26987

    Article  PubMed  PubMed Central  Google Scholar 

  18. Vitali C (2002) Classification criteria for Sjogren’s syndrome: a revised version of the European criteria proposed by the American-European Consensus Group. Ann Rheum Dis 61:554–558. https://doi.org/10.1136/ard.61.6.554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Giordano I, Harmuth F, Jacobi H et al (2017) Clinical and genetic characteristics of sporadic adult-onset degenerative ataxia. Neurology 89:1043–1049. https://doi.org/10.1212/WNL.0000000000004311

    Article  PubMed  Google Scholar 

  20. Hewamadduma CA, Hoggard N, O’Malley R et al (2018) Novel genotype-phenotype and MRI correlations in a large cohort of patients with SPG7 mutations. Neurol Genet 4:e279. https://doi.org/10.1212/NXG.0000000000000279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. De la Casa-Fages B, Fernández-Eulate G, Gamez J et al (2019) Parkinsonism and spastic paraplegia type 7: expanding the spectrum of mitochondrial Parkinsonism. Mov Disord 34:1547–1561. https://doi.org/10.1002/mds.27812

    Article  CAS  PubMed  Google Scholar 

  22. Aboud Syriani D, Wong D, Andani S et al (2020) Prevalence of RFC1 -mediated spinocerebellar ataxia in a North American ataxia cohort. Neurol Genet 6:e440. https://doi.org/10.1212/NXG.0000000000000440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Traschütz A, Cortese A, Reich S et al (2021) Natural History, phenotypic spectrum, and discriminative features of multisystemic RFC1 disease. Neurology 96:e1369–e1382. https://doi.org/10.1212/WNL.0000000000011528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Matos PCAAP, Rezende TJR, Schmitt GS, et al (2021) Brain structural signature of RFC1‐related disorder. Mov Disord. https://doi.org/10.1002/mds.28711

  25. Silva Schmitt G, Martinez ARM, Graça FF et al (2020) Dopa-responsive parkinsonism in a patient with homozygous RFC1 expansions. Mov Disord 35:1889–1890. https://doi.org/10.1002/mds.28286

    Article  PubMed  Google Scholar 

  26. Wan L, Chen Z, Wan N et al (2020) Biallelic intronic AAGGG expansion of RFC1 is related to multiple system atrophy. Ann Neurol 88:1132–1143. https://doi.org/10.1002/ana.25902

    Article  CAS  PubMed  Google Scholar 

  27. Sullivan R, Yau WY, Chelban V et al (2020) RFC1 intronic repeat expansions absent in pathologically confirmed multiple systems atrophy. Mov Disord 35:1277–1279. https://doi.org/10.1002/mds.28074

    Article  PubMed  Google Scholar 

  28. Hadjivassiliou M, Graus F, Honnorat J et al (2020) Diagnostic criteria for primary autoimmune cerebellar ataxia—guidelines from an international task force on immune-mediated cerebellar ataxias. Cerebellum 19:605–610. https://doi.org/10.1007/s12311-020-01132-8

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors received a grant from the association “Connaître les syndromes cérébelleux” (CSC).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the investigation and writing—review and editing of the study. Project administration and supervision were performed by Christine Tranchant and Mathieu Anheim. Visualization and writing–original draft preparation were performed by Thomas Bogdan, Thomas Wirth, and Mathieu Anheim. Conceptualization and methodology were performed by Thomas Bogdan, Thomas Wirth, Andra Iosif, Christine Tranchant, and Mathieu Anheim. Formal analysis was performed by Thomas Bogdan and Thomas Wirth. Data curation was performed by Thomas Bogdan, Thomas Wirth, and Andra Iosif. Resources were obtained from Audrey Schalk, Jean-Baptiste Chanson, Gaël Nicolas, Jamel Chelly, Michel Koenig, Cécile Cazeneuve, Caroline Bund, Izzie-Jacques Namer, Stéphane Kremer, and Nadège Calmels. Funding acquisition was performed by Mathieu Anheim.

Corresponding author

Correspondence to T. Bogdan.

Ethics declarations

Conflicts of interest/competing interests

The authors declare that they have no conflict of interest.

Ethical approval

Approval was obtained from the local ethics committee of Strasbourg University Hospital.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 32 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogdan, T., Wirth, T., Iosif, A. et al. Unravelling the etiology of sporadic late-onset cerebellar ataxia in a cohort of 205 patients: a prospective study. J Neurol 269, 6354–6365 (2022). https://doi.org/10.1007/s00415-022-11253-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-022-11253-1

Keywords

Navigation