Skip to main content

Advertisement

Log in

Circulating cell-free mtDNA release is associated with the activation of cGAS-STING pathway and inflammation in mitochondrial diseases

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background

There is increasing evidence for the role of inflammation in the pathogenesis of mitochondrial diseases (MDs). However, the mechanisms underlying mutation-induced inflammation in MD remain elusive. Our previous study suggested that mitophagy is impaired in the skeletal muscle of those with MD, likely causing mitochondrial DNA (mtDNA) release and thereby triggering inflammation. We here aimed to decipher the role of the cGAS-STING pathway in inflammatory process in MDs.

Methods

We investigated the levels of circulating cell-free mtDNA (ccf-mtDNA) in the serum of 104 patients with MDs. Immunofluorescence was performed in skeletal muscles in MDs and control. Biochemical analysis of muscle biopsies was conducted with western blot to detect cGAS, STING, TBK1, IRF3 and phosphorylated IRF3 (p-IRF3). RT-qPCR was performed to detect the downstream genes of type I interferon in skeletal muscles. Furthermore, a protein microarray was used to examine the cytokine levels in the serum of patients with MDs.

Results

We found that ccf-mtDNA levels were significantly increased in those with MDs compared to the controls. Consistently, the immunofluorescent results showed that cytosolic dsDNA levels were increased in the muscle samples of MD patients. Biochemical analysis of muscle biopsies showed that cGAS, IRF3, and TBK1 protein levels were significantly increased in those with MDs, indicating that there was activation of the cGAS-STING pathway. RT-qPCR showed that downstream genes of type I interferon were upregulated in muscle samples of MDs. Protein microarray results showed that a total of six cytokines associated with the cGAS-STING pathway were significantly increased in MD patients (fold change > 1.2, p value < 0.05).

Conclusions

These findings suggest that increases in ccf-mtDNA levels is associated with the activation of the cGAS-STING pathway, thereby triggering inflammation in MDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Craven L, Alston C, Taylor R, Turnbull D (2017) Recent advances in mitochondrial disease. Annu Rev Genomics Hum Genet 18:257–275. https://doi.org/10.1146/annurev-genom-091416-035426

    Article  CAS  PubMed  Google Scholar 

  2. El-Hattab AW, Adesina AM, Jones J, Scaglia F (2015) MELAS syndrome: clinical manifestations, pathogenesis, and treatment options. Mol Genet Metab 116(1–2):4–12. https://doi.org/10.1016/j.ymgme.2015.06.004

    Article  CAS  PubMed  Google Scholar 

  3. Balsa E, Perry EA, Bennett CF et al (2020) Defective NADPH production in mitochondrial disease complex I causes inflammation and cell death. Nat Commun 11(1):2714. https://doi.org/10.1038/s41467-020-16423-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jin Z, Wei W, Yang M, Du Y, Wan Y (2014) Mitochondrial complex I activity suppresses inflammation and enhances bone resorption by shifting macrophage-osteoclast polarization. Cell Metab 20(3):483–498. https://doi.org/10.1016/j.cmet.2014.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Soustek MS, Balsa E, Barrow JJ et al (2018) Inhibition of the ER stress IRE1alpha inflammatory pathway protects against cell death in mitochondrial complex I mutant cells. Cell Death Dis 9(6):658. https://doi.org/10.1038/s41419-018-0696-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Perry EA, Bennett CF, Luo C et al (2021) Tetracyclines promote survival and fitness in mitochondrial disease models. Nat Metab 3(1):33–42. https://doi.org/10.1038/s42255-020-00334-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Maresca A, Del Dotto V, Romagnoli M et al (2020) Expanding and validating the biomarkers for mitochondrial diseases. J Mol Med (Berl) 98(10):1467–1478. https://doi.org/10.1007/s00109-020-01967-y

    Article  CAS  Google Scholar 

  8. Trifunov S, Paredes-Fuentes AJ, Badosa C et al (2021) Circulating cell-free mitochondrial DNA in cerebrospinal fluid as a biomarker for mitochondrial diseases. Clin Chem 67(8):1113–1121. https://doi.org/10.1093/clinchem/hvab091

    Article  PubMed  Google Scholar 

  9. Deng J, Lu Y, Xie Z, Liu J, Yuan Y, Wang Z (2020) RNA-seq profiling, and impaired autophagic process in skeletal muscle of MELAS. Biochem Biophys Res Commun 523(1):91–97. https://doi.org/10.1016/j.bbrc.2019.12.005

    Article  CAS  PubMed  Google Scholar 

  10. Borsche M, Konig IR, Delcambre S et al (2020) Mitochondrial damage-associated inflammation highlights biomarkers in PRKN/PINK1 parkinsonism. Brain 143(10):3041–3051. https://doi.org/10.1093/brain/awaa246

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gambardella S, Limanaqi F, Ferese R et al (2019) ccf-mtDNA as a potential link between the brain and immune system in neuro-immunological disorders. Front Immunol 10:1064. https://doi.org/10.3389/fimmu.2019.01064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mehta SR, Perez-Santiago J, Hulgan T et al (2017) Cerebrospinal fluid cell-free mitochondrial DNA is associated with HIV replication, iron transport, and mild HIV-associated neurocognitive impairment. J Neuroinflamm 14(1):72. https://doi.org/10.1186/s12974-017-0848-z

    Article  CAS  Google Scholar 

  13. Arshad O, Gadawska I, Sattha B, Cote HCF, Hsieh AYY; Canadian Institutes of Health Research Team on Cellular A, Women HIVCi, Children (2018) Elevated cell-free mitochondrial DNA in filtered plasma is associated with HIV infection and inflammation. J Acquir Immune Defic Syndr 78(1):111–118. https://doi.org/10.1097/QAI.0000000000001650

  14. Barichello T, Savi GD, Simoes LR et al (2010) Evaluation of mitochondrial respiratory chain in the brain of rats after pneumococcal meningitis. Brain Res Bull 82(5–6):302–307. https://doi.org/10.1016/j.brainresbull.2010.05.012

    Article  CAS  PubMed  Google Scholar 

  15. Gopinathan U, Ovstebo R, Brusletto BS et al (2017) Transcriptomic data from two primary cell models stimulating human monocytes suggest inhibition of oxidative phosphorylation and mitochondrial function by N. meningitidis which is partially up-regulated by IL–10. BMC Immunol. https://doi.org/10.1186/s12865-017-0229-5

    Article  PubMed  PubMed Central  Google Scholar 

  16. Blot M, Pauchard LA, Dunn I et al (2018) Mechanical ventilation and Streptococcus pneumoniae pneumonia alter mitochondrial homeostasis. Sci Rep 8(1):11718. https://doi.org/10.1038/s41598-018-30226-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. West AP, Khoury-Hanold W, Staron M et al (2015) Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520(7548):553–557. https://doi.org/10.1038/nature14156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. White MJ, McArthur K, Metcalf D et al (2014) Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 159(7):1549–1562. https://doi.org/10.1016/j.cell.2014.11.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sun L, Wu J, Du F, Chen X, Chen ZJ (2013) Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339(6121):786–791. https://doi.org/10.1126/science.1232458

    Article  CAS  PubMed  Google Scholar 

  20. Chen Q, Sun L, Chen ZJ (2016) Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat Immunol 17(10):1142–1149. https://doi.org/10.1038/ni.3558

    Article  CAS  PubMed  Google Scholar 

  21. Fang C, Wei X, Wei Y (2016) Mitochondrial DNA in the regulation of innate immune responses. Protein Cell 7(1):11–16. https://doi.org/10.1007/s13238-015-0222-9

    Article  CAS  PubMed  Google Scholar 

  22. Bai J, Cervantes C, Liu J et al (2017) DsbA-L prevents obesity-induced inflammation and insulin resistance by suppressing the mtDNA release-activated cGAS-cGAMP-STING pathway. Proc Natl Acad Sci USA 114(46):12196–12201. https://doi.org/10.1073/pnas.1708744114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yu CH, Davidson S, Harapas CR et al (2020) TDP-43 triggers mitochondrial DNA release via mPTP to activate cGAS/STING in ALS. Cell 183(3):636-649 e18. https://doi.org/10.1016/j.cell.2020.09.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ling F, Zhao J, Liu J et al (2015) Clinical and muscle imaging findings in 14 mainland Chinese patients with oculopharyngodistal myopathy. PLoS ONE. https://doi.org/10.1371/journal.pone.0128629

    Article  PubMed  PubMed Central  Google Scholar 

  25. Angela P, Brennan R, Marzena KA et al (2015) Reduced cerebrospinal fluid mitochondrial DNA Is a biomarker for early-stage Parkinson’s disease. Ann Neurol 78(6):1000–1004. https://doi.org/10.1002/ana.24515

    Article  CAS  Google Scholar 

  26. Liu P, Li F, Lin J et al (2021) m(6)A-independent genome-wide METTL3 and METTL14 redistribution drives the senescence-associated secretory phenotype. Nat Cell Biol 23(4):355–365. https://doi.org/10.1038/s41556-021-00656-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kanehisa M, Araki M, Goto S et al (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36(Database issue):D480-484. https://doi.org/10.1093/nar/gkm882

    Article  CAS  PubMed  Google Scholar 

  28. Mancuso M, Orsucci D, Ienco EC et al (2013) An “inflammatory” mitochondrial myopathy a case report. Neuromuscul Disord 23(11):907–910. https://doi.org/10.1016/j.nmd.2013.07.011

    Article  PubMed  Google Scholar 

  29. West AP, Shadel GS (2017) Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat Rev Immunol 17(6):363–375. https://doi.org/10.1038/nri.2017.21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang Q, Raoof M, Chen Y et al (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464(7285):104–107. https://doi.org/10.1038/nature08780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang Q, Itagaki K, Hauser CJ (2010) Mitochondrial DNA is released by shock and activates neutrophils via p38 map kinase. Shock 34(1):55–59. https://doi.org/10.1097/SHK.0b013e3181cd8c08

    Article  CAS  PubMed  Google Scholar 

  32. Roers A, Hiller B, Hornung V (2016) Recognition of endogenous nucleic acids by the innate immune system. Immunity 44(4):739–754. https://doi.org/10.1016/j.immuni.2016.04.002

    Article  CAS  PubMed  Google Scholar 

  33. Barber GN (2015) STING: infection, inflammation and cancer. Nat Rev Immunol 15(12):760–770. https://doi.org/10.1038/nri3921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lepelley A, Mina ED, Van Nieuwenhove E et al (2021) Enhanced cGAS-STING-dependent interferon signaling associated with mutations in ATAD3A. J Exp Med. https://doi.org/10.1084/jem.20201560

    Article  PubMed  PubMed Central  Google Scholar 

  35. Li Q, Liu C, Yue R et al (2019) cGAS/STING/TBK1/IRF3 signaling pathway activates bmdcs maturation following Mycobacterium bovis infection. Int J Mol Sci. https://doi.org/10.3390/ijms20040895

    Article  PubMed  PubMed Central  Google Scholar 

  36. Grabosch S, Bulatovic M, Zeng F et al (2019) Cisplatin-induced immune modulation in ovarian cancer mouse models with distinct inflammation profiles. Oncogene 38(13):2380–2393. https://doi.org/10.1038/s41388-018-0581-9

    Article  CAS  PubMed  Google Scholar 

  37. Zhao H, Wu L, Yan G et al (2021) Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther 6(1):263. https://doi.org/10.1038/s41392-021-00658-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tsai CH, Chen CJ, Gong CL et al (2021) CXCL13/CXCR5 axis facilitates endothelial progenitor cell homing and angiogenesis during rheumatoid arthritis progression. Cell Death Dis 12(9):846. https://doi.org/10.1038/s41419-021-04136-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Denton AE, Innocentin S, Carr EJ et al (2019) Type I interferon induces CXCL13 to support ectopic germinal center formation. J Exp Med 216(3):621–637. https://doi.org/10.1084/jem.20181216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Koti M, Chenard S, Nersesian S, Vidotto T, Morales A, Siemens DR (2019) Investigating the STING pathway to explain mechanisms of BCG failures in non-muscle invasive bladder cancer: prognostic and therapeutic implications. Bladder Cancer 5(3):225–234. https://doi.org/10.3233/blc-190228

    Article  Google Scholar 

  41. Sliter DA, Martinez J, Hao L et al (2018) Parkin and PINK1 mitigate STING-induced inflammation. Nature 561(7722):258–262. https://doi.org/10.1038/s41586-018-0448-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We appreciated the cooperation of the patients and their families.

Funding

The work was funded by the National Natural Science Foundation of China (No. 81571219, 82071409, 82171846 and U20A20356). Capital's Funds for Health Improvement and Research (2022-4-40716).

Author information

Authors and Affiliations

Authors

Contributions

ZXW and JWD conceived the idea, designed studies and supervised the project; XTZ and MY designed and carried out experiments, analyzed data; MY, YWZ, YMZ, ZYX, and LCM collected the patient; QQW, JL, HL, WZ, YY contributed to the clinical diagnosis and biopsy of MD patients; XTZ, ZXW and JWD wrote and edited the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zhaoxia Wang or Jianwen Deng.

Ethics declarations

Conflicts of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Yu, M., Zhao, Y. et al. Circulating cell-free mtDNA release is associated with the activation of cGAS-STING pathway and inflammation in mitochondrial diseases. J Neurol 269, 4985–4996 (2022). https://doi.org/10.1007/s00415-022-11146-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-022-11146-3

Keywords

Navigation