Skip to main content
Log in

Neuroinflammation in Parkinson's disease: a meta-analysis of PET imaging studies

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Increasingly, evidence implicates an important role of neuroinflammation in neurodegeneration progression. Yet, brain imaging has not reached a consistent conclusion that neuroinflammation is involved in the pathogenesis of Parkinson's disease (PD). We aimed to review the evidence to quantitatively assess the existence and spatial distribution of neuroinflammation in the brain of PD patients. We systematically searched literature databases for case–control studies which used positron emission tomography to detect neuroinflammation represented by translocator protein (TSPO) levels in PD patients compared with healthy controls (HC). Standardized mean differences (SMD) were selected as effect sizes and random-effects models were used to combine effect sizes. Subgroup analyses for separate brain regions were conducted. Fifteen studies comprising 455 (HC = 198, PD = 238) participants and 19 brain regions were included. Compared to HC, PD patients had elevated TSPO levels in midbrain, putamen, anterior cingulate, posterior cingulate, thalamus, striatum, frontal, temporal, parietal, occipital, cortex, hippocampus, substantia nigra, pons, cerebellum, and caudate when using 1st-generation ligands. TSPO levels were elevated in the midbrain of PD patients when 2nd-generation ligands were used. We discussed the possible explanations of contrasting difference between these outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

References

  1. Dorsey ER, Bloem BR (2018) The Parkinson pandemic-A call to action. JAMA Neurol 75(1):9–10. https://doi.org/10.1001/jamaneurol.2017.3299

    Article  PubMed  Google Scholar 

  2. Pont-Sunyer C, Hotter A, Gaig C, Seppi K, Compta Y, Katzenschlager R, Mas N, Hofeneder D, Brücke T, Bayés A, Wenzel K, Infante J, Zach H, Pirker W, Posada IJ, Álvarez R, Ispierto L, De Fàbregues O, Callén A, Palasí A, Aguilar M, Martí MJ, Valldeoriola F, Salamero M, Poewe W, Tolosa E (2015) The onset of nonmotor symptoms in Parkinson’s disease (the ONSET PD study). Mov Disord 30(2):229–237. https://doi.org/10.1002/mds.26077

    Article  PubMed  Google Scholar 

  3. Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag AE, Lang AE (2017) Parkinson disease. Nat Rev Dis Primers 3:17013. https://doi.org/10.1038/nrdp.2017.13

    Article  PubMed  Google Scholar 

  4. Martin I, Dawson VL, Dawson TM (2011) Recent advances in the genetics of Parkinson’s disease. Annu Rev Genomics Hum Genet 12:301–325. https://doi.org/10.1146/annurev-genom-082410-101440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ransohoff RM (2016) How neuroinflammation contributes to neurodegeneration. Science 353(6301):777–783. https://doi.org/10.1126/science.aag2590

    Article  CAS  PubMed  Google Scholar 

  6. Joers V, Tansey MG, Mulas G, Carta AR (2017) Microglial phenotypes in Parkinson’s disease and animal models of the disease. Prog Neurobiol 155:57–75. https://doi.org/10.1016/j.pneurobio.2016.04.006

    Article  CAS  PubMed  Google Scholar 

  7. Sanchez-Guajardo V, Barnum CJ, Tansey MG, Romero-Ramos M (2013) Neuroimmunological processes in Parkinson’s disease and their relation to α-synuclein: microglia as the referee between neuronal processes and peripheral immunity. ASN Neuro 5(2):113–139. https://doi.org/10.1042/an20120066

    Article  CAS  PubMed  Google Scholar 

  8. Chen X, Hu Y, Cao Z, Liu Q, Cheng Y (2018) Cerebrospinal fluid inflammatory cytokine aberrations in Alzheimer’s Disease, Parkinson’s Disease and Amyotrophic Lateral Sclerosis: a systematic review and meta-analysis. Front Immunol 9:2122. https://doi.org/10.3389/fimmu.2018.02122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Doorn KJ, Moors T, Drukarch B, van de Berg W, Lucassen PJ, van Dam AM (2014) Microglial phenotypes and toll-like receptor 2 in the substantia nigra and hippocampus of incidental Lewy body disease cases and Parkinson’s disease patients. Acta Neuropathol Commun 2:90. https://doi.org/10.1186/s40478-014-0090-1

    Article  PubMed  PubMed Central  Google Scholar 

  10. Papadopoulos V, Baraldi M, Guilarte TR, Knudsen TB, Lacapère JJ, Lindemann P, Norenberg MD, Nutt D, Weizman A, Zhang MR, Gavish M (2006) Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci 27(8):402–409. https://doi.org/10.1016/j.tips.2006.06.005

    Article  CAS  PubMed  Google Scholar 

  11. Banati RB (2002) Visualising microglial activation in vivo. Glia 40(2):206–217. https://doi.org/10.1002/glia.10144

    Article  PubMed  Google Scholar 

  12. Högel H, Rissanen E, Vuorimaa A, Airas L (2018) Positron emission tomography imaging in evaluation of MS pathology in vivo. Mult Scler 24(11):1399–1412. https://doi.org/10.1177/1352458518791680

    Article  PubMed  Google Scholar 

  13. Lagarde J, Sarazin M, Bottlaender M (2018) In vivo PET imaging of neuroinflammation in Alzheimer’s disease. J Neural Transm 125(5):847–867. https://doi.org/10.1007/s00702-017-1731-x

    Article  CAS  PubMed  Google Scholar 

  14. Owen DR, Matthews PM (2011) Imaging brain microglial activation using positron emission tomography and translocator protein-specific radioligands. Int Rev Neurobiol 101:19–39. https://doi.org/10.1016/b978-0-12-387718-5.00002-x

    Article  CAS  PubMed  Google Scholar 

  15. Guo Q, Owen DR, Rabiner EA, Turkheimer FE, Gunn RN (2012) Identifying improved TSPO PET imaging probes through biomathematics: the impact of multiple TSPO binding sites in vivo. Neuroimage 60(2):902–910. https://doi.org/10.1016/j.neuroimage.2011.12.078

    Article  PubMed  Google Scholar 

  16. Belloli S, Morari M, Murtaj V, Valtorta S, Moresco RM, Gilardi MC (2020) Translation imaging in Parkinson’s disease: focus on neuroinflammation. Front Aging Neurosci 12:152. https://doi.org/10.3389/fnagi.2020.00152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71. https://doi.org/10.1136/bmj.n71

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ouchi Y, Yoshikawa E, Sekine Y, Futatsubashi M, Kanno T, Ogusu T, Torizuka T (2005) Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann Neurol 57(2):168–175. https://doi.org/10.1002/ana.20338

    Article  CAS  PubMed  Google Scholar 

  19. Terada T, Yokokura M, Yoshikawa E, Futatsubashi M, Kono S, Konishi T, Miyajima H, Hashizume T, Ouchi Y (2016) Extrastriatal spreading of microglial activation in Parkinson’s disease: a positron emission tomography study. Ann Nucl Med 30(8):579–587. https://doi.org/10.1007/s12149-016-1099-2

    Article  CAS  PubMed  Google Scholar 

  20. Lavisse S, Goutal S, Wimberley C, Tonietto M, Bottlaender M, Gervais P, Kuhnast B, Peyronneau MA, Barret O, Lagarde J, Sarazin M, Hantraye P, Thiriez C, Remy P (2021) Increased microglial activation in patients with Parkinson disease using [(18)F]-DPA714 TSPO PET imaging. Parkinsonism Relat Disord 82:29–36. https://doi.org/10.1016/j.parkreldis.2020.11.011

    Article  PubMed  Google Scholar 

  21. Ghadery C, Koshimori Y, Christopher L, Kim J, Rusjan P, Lang AE, Houle S, Strafella AP (2020) The interaction between neuroinflammation and β-Amyloid in cognitive decline in Parkinson’s disease. Mol Neurobiol 57(1):492–501. https://doi.org/10.1007/s12035-019-01714-6

    Article  CAS  PubMed  Google Scholar 

  22. Koshimori Y, Ko JH, Mizrahi R, Rusjan P, Mabrouk R, Jacobs MF, Christopher L, Hamani C, Lang AE, Wilson AA, Houle S, Strafella AP (2015) Imaging striatal microglial activation in patients with Parkinson’s disease. PLoS ONE 10(9):e0138721. https://doi.org/10.1371/journal.pone.0138721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Varnäs K, Cselényi Z, Jucaite A, Halldin C, Svenningsson P, Farde L, Varrone A (2019) PET imaging of [(11)C]PBR28 in Parkinson’s disease patients does not indicate increased binding to TSPO despite reduced dopamine transporter binding. Eur J Nucl Med Mol Imaging 46(2):367–375. https://doi.org/10.1007/s00259-018-4161-6

    Article  CAS  PubMed  Google Scholar 

  24. Kreisl WC, Jenko KJ, Hines CS, Lyoo CH, Corona W, Morse CL, Zoghbi SS, Hyde T, Kleinman JE, Pike VW, McMahon FJ, Innis RB (2013) A genetic polymorphism for translocator protein 18 kDa affects both in vitro and in vivo radioligand binding in human brain to this putative biomarker of neuroinflammation. J Cereb Blood Flow Metab 33(1):53–58. https://doi.org/10.1038/jcbfm.2012.131

    Article  CAS  PubMed  Google Scholar 

  25. Masi A, Quintana DS, Glozier N, Lloyd AR, Hickie IB, Guastella AJ (2015) Cytokine aberrations in autism spectrum disorder: a systematic review and meta-analysis. Mol Psychiatry 20(4):440–446. https://doi.org/10.1038/mp.2014.59

    Article  CAS  PubMed  Google Scholar 

  26. Wang S, Chu CH, Stewart T, Ginghina C, Wang Y, Nie H, Guo M, Wilson B, Hong JS, Zhang J (2015) α-Synuclein, a chemoattractant, directs microglial migration via H2O2-dependent Lyn phosphorylation. Proc Natl Acad Sci U S A 112(15):E1926-1935. https://doi.org/10.1073/pnas.1417883112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Barkholt P, Sanchez-Guajardo V, Kirik D, Romero-Ramos M (2012) Long-term polarization of microglia upon α-synuclein overexpression in nonhuman primates. Neuroscience 208:85–96. https://doi.org/10.1016/j.neuroscience.2012.02.004

    Article  CAS  PubMed  Google Scholar 

  28. Sanchez-Guajardo V, Febbraro F, Kirik D, Romero-Ramos M (2010) Microglia acquire distinct activation profiles depending on the degree of alpha-synuclein neuropathology in a rAAV based model of Parkinson’s disease. PLoS ONE 5(1):e8784. https://doi.org/10.1371/journal.pone.0008784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gao HM, Zhang F, Zhou H, Kam W, Wilson B, Hong JS (2011) Neuroinflammation and α-synuclein dysfunction potentiate each other, driving chronic progression of neurodegeneration in a mouse model of Parkinson’s disease. Environ Health Perspect 119(6):807–814. https://doi.org/10.1289/ehp.1003013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee HJ, Suk JE, Bae EJ, Lee SJ (2008) Clearance and deposition of extracellular alpha-synuclein aggregates in microglia. Biochem Biophys Res Commun 372(3):423–428. https://doi.org/10.1016/j.bbrc.2008.05.045

    Article  CAS  PubMed  Google Scholar 

  31. Choi YR, Kang SJ, Kim JM, Lee SJ, Jou I, Joe EH, Park SM (2015) FcγRIIB mediates the inhibitory effect of aggregated α-synuclein on microglial phagocytosis. Neurobiol Dis 83:90–99. https://doi.org/10.1016/j.nbd.2015.08.025

    Article  CAS  PubMed  Google Scholar 

  32. Kouli A, Camacho M, Allinson K, Williams-Gray CH (2020) Neuroinflammation and protein pathology in Parkinson’s disease dementia. Acta Neuropathol Commun 8(1):211. https://doi.org/10.1186/s40478-020-01083-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Leal MC, Casabona JC, Puntel M, Pitossi FJ (2013) Interleukin-1β and tumor necrosis factor-α: reliable targets for protective therapies in Parkinson’s Disease? Front Cell Neurosci 7:53. https://doi.org/10.3389/fncel.2013.00053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gordon R, Albornoz EA, Christie DC, Langley MR, Kumar V, Mantovani S, Robertson AAB, Butler MS, Rowe DB, O’Neill LA, Kanthasamy AG, Schroder K, Cooper MA, Woodruff TM (2018) Inflammasome inhibition prevents α-synuclein pathology and dopaminergic neurodegeneration in mice. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aah4066

    Article  PubMed  PubMed Central  Google Scholar 

  35. Schuitemaker A, van Berckel BN, Kropholler MA, Kloet RW, Jonker C, Scheltens P, Lammertsma AA, Boellaard R (2007) Evaluation of methods for generating parametric (R-[11C]PK11195 binding images. J Cereb Blood Flow Metab 27(9):1603–1615. https://doi.org/10.1038/sj.jcbfm.9600459

    Article  CAS  PubMed  Google Scholar 

  36. Kang Y, Mozley PD, Verma A, Schlyer D, Henchcliffe C, Gauthier SA, Chiao PC, He B, Nikolopoulou A, Logan J, Sullivan JM, Pryor KO, Hesterman J, Kothari PJ, Vallabhajosula S (2018) Noninvasive PK11195-PET image analysis techniques can detect abnormal cerebral microglial activation in Parkinson’s disease. J Neuroimaging 28(5):496–505. https://doi.org/10.1111/jon.12519

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bartels AL, Willemsen AT, Doorduin J, de Vries EF, Dierckx RA, Leenders KL (2010) [11C]-PK11195 PET: quantification of neuroinflammation and a monitor of anti-inflammatory treatment in Parkinson’s disease? Parkinsonism Relat Disord 16(1):57–59. https://doi.org/10.1016/j.parkreldis.2009.05.005

    Article  CAS  PubMed  Google Scholar 

  38. Debruyne JC, Versijpt J, Van Laere KJ, De Vos F, Keppens J, Strijckmans K, Achten E, Slegers G, Dierckx RA, Korf J, De Reuck JL (2003) PET visualization of microglia in multiple sclerosis patients using [11C]PK11195. Eur J Neurol 10(3):257–264. https://doi.org/10.1046/j.1468-1331.2003.00571.x

    Article  CAS  PubMed  Google Scholar 

  39. Yasuno F, Ota M, Kosaka J, Ito H, Higuchi M, Doronbekov TK, Nozaki S, Fujimura Y, Koeda M, Asada T, Suhara T (2008) Increased binding of peripheral benzodiazepine receptor in Alzheimer’s disease measured by positron emission tomography with [11C]DAA1106. Biol Psychiatry 64(10):835–841. https://doi.org/10.1016/j.biopsych.2008.04.021

    Article  CAS  PubMed  Google Scholar 

  40. Yokokura M, Terada T, Bunai T, Nakaizumi K, Takebayashi K, Iwata Y, Yoshikawa E, Futatsubashi M, Suzuki K, Mori N, Ouchi Y (2017) Depiction of microglial activation in aging and dementia: Positron emission tomography with [(11)C]DPA713 versus [(11)C]( R)PK11195. J Cereb Blood Flow Metab 37(3):877–889. https://doi.org/10.1177/0271678x16646788

    Article  CAS  PubMed  Google Scholar 

  41. Owen DR, Yeo AJ, Gunn RN, Song K, Wadsworth G, Lewis A, Rhodes C, Pulford DJ, Bennacef I, Parker CA, StJean PL, Cardon LR, Mooser VE, Matthews PM, Rabiner EA, Rubio JP (2012) An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab 32(1):1–5. https://doi.org/10.1038/jcbfm.2011.147

    Article  CAS  PubMed  Google Scholar 

  42. Costa B, Pini S, Gabelloni P, Da Pozzo E, Abelli M, Lari L, Preve M, Lucacchini A, Cassano GB, Martini C (2009) The spontaneous Ala147Thr amino acid substitution within the translocator protein influences pregnenolone production in lymphomonocytes of healthy individuals. Endocrinology 150(12):5438–5445. https://doi.org/10.1210/en.2009-0752

    Article  CAS  PubMed  Google Scholar 

  43. Costa B, Pini S, Martini C, Abelli M, Gabelloni P, Landi S, Muti M, Gesi C, Lari L, Cardini A, Galderisi S, Mucci A, Lucacchini A, Cassano GB (2009) Ala147Thr substitution in translocator protein is associated with adult separation anxiety in patients with depression. Psychiatr Genet 19(2):110–111. https://doi.org/10.1097/YPG.0b013e32832080f6

    Article  PubMed  Google Scholar 

  44. Banati RB, Newcombe J, Gunn RN, Cagnin A, Turkheimer F, Heppner F, Price G, Wegner F, Giovannoni G, Miller DH, Perkin GD, Smith T, Hewson AK, Bydder G, Kreutzberg GW, Jones T, Cuzner ML, Myers R (2000) The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity. Brain 123(Pt 11):2321–2337. https://doi.org/10.1093/brain/123.11.2321

    Article  PubMed  Google Scholar 

  45. Lin L, Aloe AM (2021) Evaluation of various estimators for standardized mean difference in meta-analysis. Stat Med 40(2):403–426. https://doi.org/10.1002/sim.8781

    Article  PubMed  Google Scholar 

  46. Gerhard A, Pavese N, Hotton G, Turkheimer F, Es M, Hammers A, Eggert K, Oertel W, Banati RB, Brooks DJ (2006) In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson's disease. Neurobiol Dis 21(2):404–412. https://doi.org/10.1016/j.nbd.2005.08.002

    Article  CAS  Google Scholar 

  47. Edison P, Ahmed I, Fan Z, Hinz R, Gelosa G, Ray Chaudhuri K, Walker Z, Turkheimer FE, Brooks DJ (2013) Microglia amyloid and glucose metabolism in Parkinson’s disease with and without dementia. Neuropsychopharmacology 38(6):938–949. https://doi.org/10.1038/npp.2012.255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Iannaccone S, Cerami C, Alessio M, Garibotto V, Panzacchi A, Olivieri S, Gelsomino G, Moresco RM, Perani D (2013) In vivo microglia activation in very early dementia with Lewy bodies comparison with Parkinson's disease. Parkinsonism Relat Disord 19(1):47–52. https://doi.org/10.1016/j.parkreldis.2012.07.002

    Article  CAS  PubMed  Google Scholar 

  49. Kobylecki C, Counsell SJ, Cabanel N, Wächter T, Turkheimer FE, Eggert K, Oertel W, Brooks DJ, Gerhard A (2013) Diffusion-weighted imaging and its relationship to microglial activation in Parkinsonian syndromes. Parkinsonism Relat Disord 19(5):527–532. https://doi.org/10.1016/j.parkreldis.2013.01.017

    Article  PubMed  Google Scholar 

  50. Fan Z, Aman Y, Ahmed I, Chetelat G, Landeau B, Ray Chaudhuri K, Brooks DJ, Edison P (2015) Influence of microglial activation on neuronal function in Alzheimer's and Parkinson's disease dementia. Alzheimer's Dement 11(6):608–610. https://doi.org/10.1016/j.jalz.2014.06.016

    Article  Google Scholar 

  51. Grazia D, Siddharth F, Atkinson N, Fan Z, Brooks DJ, Edison P (2016) Does microglial activation influence hippocampal volume and neuronal function in Alzheimer’s disease and Parkinson’s disease dementia? J Alzheimer's Dis 51(4):1275–1289. https://doi.org/10.3233/JAD-150827

    Article  CAS  Google Scholar 

  52. Ghadery C, Koshimori Y, Coakeley S, Harris M, Rusjan P, Kim J, Houle S, Strafella AP (2017) Microglial activation in Parkinson’s disease using [18F]-FEPPA. J Neuroinflamm. https://doi.org/10.1186/s12974-016-0778-1

    Article  Google Scholar 

Download references

Funding

This study was supported by grants from the National Natural Science Foundation of China (81771148).

Author information

Authors and Affiliations

Authors

Contributions

Peng-Fei Zhang and Fan Gao contributed equally to this study.

Corresponding author

Correspondence to Peng-Fei Zhang.

Ethics declarations

Conflicts of interest

Nothing to declare.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 115810 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, PF., Gao, F. Neuroinflammation in Parkinson's disease: a meta-analysis of PET imaging studies. J Neurol 269, 2304–2314 (2022). https://doi.org/10.1007/s00415-021-10877-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-021-10877-z

Keywords

Navigation