Skip to main content

Advertisement

Log in

Pharmacological and non-pharmacological management of spinocerebellar ataxia: A systematic review

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Spinocerebellar ataxias (SCA) comprise a rare, genetic subgroup within the degenerative ataxias and are dominantly inherited, with up to 48 recognized genetic subtypes. While an updated review on the management of degenerative ataxia is published recently, an evidence-based review focussed on the management of SCA is lacking. Here, we reviewed the pharmacological and non-pharmacological management of SCA by conducting a systematic review on Medline Ovid and Scopus. Of 29,284 studies identified, 47 studies (pharmacological: n = 25; non-pharmacological: n = 22) that predominantly involved SCA patients were included. Twenty studies had a high risk of bias based on the Cochrane’s Collaboration risk of bias tool. As per the European Federation of Neurological Societies 2004 guideline for therapeutic intervention, the remaining 27 studies were of Class I (n = 4) and Class II (n = 23) evidence. Only two therapies had Level A recommendations for the management of ataxia symptoms: riluzole and immediate in-patient neurorehabilitation. Ten therapies had Level B recommendations for managing ataxia symptoms and require further investigations with better study design. These include high dose valproate acid, branched-chain amino acid, intravenous trehalose; restorative rehabilitation using cycling regimen and videogame; and cerebellar stimulations using transcranial direct current stimulation and transcranial magnetic stimulation. Lithium and coaching on psychological adjustment received Level B recommendation for depressive symptoms and quality of life, respectively. Heterogeneous study designs, different genotypes, and non-standardized clinical measures alongside short duration and small sample sizes may hamper meaningful clinical translation. Therefore, rating of recommendations only serve as points of reference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Code availability

Not applicable.

References

  1. Bodranghien F, Bastian A, Casali C, Hallett M, Louis ED, Manto M, Mariën P, Nowak DA, Schmahmann JD, Serrao M (2016) Consensus paper: revisiting the symptoms and signs of cerebellar syndrome. Cerebellum 15:369–391

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ruano L, Melo C, Silva MC, Coutinho P (2014) The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology 42:174–183

    Article  PubMed  Google Scholar 

  3. Jacobi H, du Montcel ST, Bauer P, Giunti P, Cook A, Labrum R, Parkinson MH, Durr A, Brice A, Charles P (2015) Long-term disease progression in spinocerebellar ataxia types 1, 2, 3, and 6: a longitudinal cohort study. Lancet Neurol 14:1101–1108

    Article  PubMed  Google Scholar 

  4. Maschke M, Oehlert G, Xie TD, Perlman S, Subramony SH, Kumar N, Ptacek LJ, Gomez CM (2005) Clinical feature profile of spinocerebellar ataxia type 1–8 predicts genetically defined subtypes. Mov Disord 20:1405–1412

    Article  PubMed  Google Scholar 

  5. López-Bastida J, Perestelo-Pérez L, Montón-álvarez F, Serrano-Aguilar P (2008) Social economic costs and health-related quality of life in patients with degenerative cerebellar ataxia in Spain. Mov Disord 23:212–217

    Article  PubMed  Google Scholar 

  6. Diallo A, Jacobi H, Cook A, Labrum R, Durr A, Brice A, Charles P, Marelli C, Mariotti C, Nanetti L (2018) Survival in patients with spinocerebellar ataxia types 1, 2, 3, and 6 (EUROSCA): a longitudinal cohort study. Lancet Neurol 17:327–334

    Article  PubMed  Google Scholar 

  7. Bolton C, Lacy M (2019) Comparison of cognitive profiles in spinocerebellar ataxia subtypes: a case series. Cerebellum Ataxias 6:13–16

    Article  PubMed  PubMed Central  Google Scholar 

  8. Klockgether T, Mariotti C, Paulson HL (2019) Spinocerebellar ataxia. Nat Rev Dis Primers 5:24

    Article  PubMed  Google Scholar 

  9. Stoodley CJ, Schmahmann JD (2010) Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 46:831–844

    Article  PubMed  PubMed Central  Google Scholar 

  10. Reeber SL, Otis TS, Sillitoe RV (2013) New roles for the cerebellum in health and disease. Front Syst Neurosci 7:1–11

    Article  Google Scholar 

  11. Braga-Neto P, Pedroso JL, Alessi H, Dutra LA, Felício AC, Minett T, Weisman P, Santos-Galduroz RF, Bertolucci PHF, Gabbai AA (2012) Cerebellar cognitive affective syndrome in Machado Joseph disease: Core clinical features. Cerebellum 11:549–556

    Article  PubMed  Google Scholar 

  12. Coarelli G, Brice A, Durr A (2018) Recent advances in understanding dominant spinocerebellar ataxias from clinical and genetic points of view. F1000Research 7:1781–1790

    Article  CAS  Google Scholar 

  13. Ashizawa T, Öz G, Paulson HL (2018) Spinocerebellar ataxias: prospects and challenges for therapy development. Nat Rev Neurol 14:590–605

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sarva H, Shanker VL (2014) Treatment options in degenerative cerebellar ataxia: a systematic review. Mov Disord Clin Pract 1:291–298

    Article  PubMed  PubMed Central  Google Scholar 

  15. Page M, McKenzie JB, Boutron PMI, Hoffmann T, Mulrow CS, Tetzlaff JL, Akl E, Brennan S, Chou R, Glanville J, Grimshaw J, Hróbjartsson A, Lalu M, Li T, Loder E, Mayo-Wilson E, McDonald SM, Stewart LAL, Thomas J, Tricco A, Welch V, Whiting P, Moher D (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71

    Article  PubMed  PubMed Central  Google Scholar 

  16. Higgins JP, Savović J, Page MJ, Elbers RG, Sterne JA (2019) Assessing risk of bias in a randomized trial. In: Cochrane Handbook for Systematic Reviews of Interventions, pp 205–28

  17. Brainin M, Barnes M, Baron JC, Gilhus N, Hughes R, Selmaj K, Waldemar G (2004) Guidance for the preparation of neurological management guidelines by EFNS scientific task forces–revised recommendations 2004. Eur J Neurol 11:577–581

    Article  CAS  PubMed  Google Scholar 

  18. Liu CS, Hsu HM, Cheng WL, Hsieh M (2005) Clinical and molecular events in patients with Machado-Joseph disease under lamotrigine therapy. Acta Neurol Scand 111:385–390

    Article  CAS  PubMed  Google Scholar 

  19. Sakai T, Matsuishi T, Yamada S, Komori H, Iwashita H (1995) Sulfamethoxazole-trimethoprim double-blind, placebo-controlled, crossover trial in Machado-Joseph disease: Sulfamethoxazole-trimethoprim increases cerebrospinal fluid level of biopterin. J Neural Transm/Gen Sect 102:159–172

    Article  CAS  Google Scholar 

  20. Schulte T, Mattern R, Berger K, Szymanski S, Klotz P, Kraus PH, Przuntek H, Schöls L (2001) Double-blind crossover trial of trimethoprim-sulfamethoxazole in spinocerebellar ataxia type 3/Machado-Joseph disease. Arch Neurol 58:1451–1457

    Article  CAS  PubMed  Google Scholar 

  21. Sakai T, Antoku Y, Matsuishi T, Iwashita H (1996) Tetrahydrobiopterin double-blind, crossover trial in Machado-Joseph disease. J Neurol Sci 136:71–72

    Article  CAS  PubMed  Google Scholar 

  22. Wessel K, Langenberger K, Nitschke MF, Kömpf D (1997) Double-blind crossover study with physostigmine in patients with degenerative cerebellar diseases. Arch Neurol 54:397–400

    Article  CAS  PubMed  Google Scholar 

  23. Huang Y-Z, Chang Y-S, Hsu M-J, Wong AM, Chang Y-J (2015) Restoration of central programmed movement pattern by temporal electrical stimulation-assisted training in patients with spinal cerebellar atrophy. Neural Plast 2015:1–9

    Article  Google Scholar 

  24. Hong JS, Kim JH, Yong SY, Lee YH, Kim SH, Park JY, Lee JK, Jang JY (2020) Preliminary clinical trial of balance compensation system for improvement of balance in patients with spinocerebellar ataxia. J Korean Acad Rehabil Med

  25. Tsukahara A, Yoshida K, Matsushima A, Ajima K, Kuroda C, Mizukami N, Hashimoto M (2018) Effects of gait support in patients with spinocerebellar degeneration by a wearable robot based on synchronization control. J Neuroeng Rehabil 15:84

    Article  PubMed  PubMed Central  Google Scholar 

  26. Romano S, Coarelli G, Marcotulli C, Leonardi L, Piccolo F, Spadaro M, Frontali M, Ferraldeschi M, Vulpiani MC, Ponzelli F (2015) Riluzole in patients with hereditary cerebellar ataxia: a randomised, double-blind, placebo-controlled trial. Lancet Neurol 14:985–991

    Article  CAS  PubMed  Google Scholar 

  27. Kobayashi K, Abe Y, Harada H, Oota E, Endo T, Takeda H (2019) Non-Clinical pharmacokinetic profiles of rovatirelin, an orally available thyrotropin-releasing hormone analogue. Xenobiotica 49:106–119

    Article  CAS  PubMed  Google Scholar 

  28. Saute JAM, de Castilhos RM, Monte TL, Schumacher-Schuh AF, Donis KC, D’Ávila R, Souza GN, Russo AD, Furtado GV, Gheno TC (2014) A randomized, phase 2 clinical trial of lithium carbonate in Machado-Joseph disease. Mov Disord 29:568–573

    Article  CAS  PubMed  Google Scholar 

  29. Lei L-F, Yang G-P, Wang J-L, Chuang D-M, Song W-H, Tang B-S, Jiang H (2016) Safety and efficacy of valproic acid treatment in SCA3/MJD patients. Parkinsonism Relat Disord 26:55–61

    Article  PubMed  Google Scholar 

  30. Zesiewicz TA, Greenstein P, Sullivan KL, Wecker L, Miller A, Jahan I, Chen R, Perlman S (2012) A randomized trial of varenicline (Chantix) for the treatment of spinocerebellar ataxia type 3. Neurology 78:545–550

    Article  CAS  PubMed  Google Scholar 

  31. Mori M, Adachi Y, Mori N, Kurihara S, Kashiwaya Y, Kusumi M, Takeshima T, Nakashima K (2002) Double-blind crossover study of branched-chain amino acid therapy in patients with spinocerebellar degeneration. J Neurol Sci 195:149–152

    Article  CAS  PubMed  Google Scholar 

  32. Zaltzman R, Elyoseph Z, Lev N, Gordon CR (2020) Trehalose in Machado-Joseph disease: safety, tolerability, and efficacy. Cerebellum 19:672–679

    Article  CAS  PubMed  Google Scholar 

  33. Velázquez-Pérez L, Rodríguez-Chanfrau J, García-Rodríguez JC, Sánchez-Cruz G, Aguilera-Rodríguez R, Rodríguez-Labrada R, Rodríguez-Díaz JC, Canales-Ochoa N, Gotay DA, Mederos LEA (2011) Oral zinc sulphate supplementation for six months in SCA2 patients: a randomized, double-blind, placebo-controlled trial. Neurochem Res 36:1793–1800

    Article  PubMed  Google Scholar 

  34. González C, Sánchez G, González Quevedo A, Delgado R, Velázquez L, García RJ (2005) Serum and cerebrospinal fluid levels of copper, iron and zinc in patiens with Ataxia type SCA-2 from the province of Holguin in Cuba. Ther Basic Dialogues Clin Neurosci 13:12–16

    Google Scholar 

  35. Bier JC, Dethy S, Hildebrand J, Jacquy J, Manto M, Martin J-J, Seeldrayers P (2003) Effects of the oral form of ondansetron on cerebellar dysfunction. J Neurol 250:693–697

    Article  CAS  PubMed  Google Scholar 

  36. Yabe I, Sasaki H, Yamashita I, Takei A, Tashiro K (2001) Clinical trial of acetazolamide in SCA6, with assessment using the Ataxia Rating Scale and body stabilometry. Acta Neurol Scand 104:44–47

    Article  CAS  PubMed  Google Scholar 

  37. Takei A, Fukazawa T, Hamada T, Sohma H, Yabe I, Sasaki H, Tashiro K (2004) Effects of tandospirone on “5-HT1A receptor-associated symptoms” in patients with Machado-Josephe disease: an open-label study. Clin Neuropharmacol 27:9–13

    Article  CAS  PubMed  Google Scholar 

  38. Takei A, Hamada S, Homma S, Hamada K, Tashiro K, Hamada T (2010) Difference in the effects of tandospirone on ataxia in various types of spinocerebellar degeneration: an open-label study. Cerebellum 9:567–570

    Article  CAS  PubMed  Google Scholar 

  39. Noorasyikin M, Elena A, Teh P, Waheeda TF, Hajar MS, Long K, Norlinah M (2020) Oral trehalose maybe helpful for patients with spinocerebellar ataxia 3 and should be better evaluated. Parkinsonism Relat Disord 70:42–44

    Article  CAS  PubMed  Google Scholar 

  40. Tan S, Wang R-H, Niu H-X, Shi C-H, Mao C-Y, Zhang R, Song B, Sun S-L, Liu X-J, Hou H-M (2015) Nerve growth factor for the treatment of spinocerebellar ataxia type 3: An open-label study. Chin Med J 128:291–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jin J-L, Liu Z, Lu Z-J, Guan D-N, Wang C, Chen Z-B, Zhang J, Zhang W-Y, Wu J-Y, Xu Y (2013) Safety and efficacy of umbilical cord mesenchymal stem cell therapy in hereditary spinocerebellar ataxia. Curr Neurovasc Res 10:11–20

    Article  CAS  PubMed  Google Scholar 

  42. Tsai Y-A, Liu R-S, Lirng J-F, Yang B-H, Chang C-H, Wang Y-C, Wu Y-S, Ho JH-C, Lee OK, Soong B-W (2017) Treatment of spinocerebellar ataxia with mesenchymal stem cells: a phase I/IIa clinical study. Cell Transpl 26:503–512

    Article  Google Scholar 

  43. Miyai I, Ito M, Hattori N, Mihara M, Hatakenaka M, Yagura H, Sobue G, Nishizawa M (2012) Cerebellar ataxia rehabilitation trial in degenerative cerebellar diseases. Neurorehabil Neural Repair 26:515–522

    Article  PubMed  Google Scholar 

  44. Rodríguez-Díaz JC, Velázquez-Pérez L, Rodríguez Labrada R, Aguilera Rodríguez R, Laffita Pérez D, Canales Ochoa N, Medrano Montero J, Estupiñán Rodríguez A, Osorio Borjas M, Góngora MM (2018) Neurorehabilitation therapy in spinocerebellar ataxia type 2: a 24-week, rater-blinded, randomized, controlled trial. Mov Disord 33:1481–1487

    Article  PubMed  Google Scholar 

  45. Tercero-Pérez K, Cortés H, Torres-Ramos Y, Rodríguez-Labrada R, Cerecedo-Zapata CM, Hernández-Hernández O, Pérez-González N, González-Piña R, Leyva-García N, Cisneros B (2019) Effects of physical rehabilitation in patients with spinocerebellar ataxia type 7. Cerebellum 18:397–405

    Article  PubMed  Google Scholar 

  46. Wang R-Y, Huang F-Y, Soong B-W, Huang S-F, Yang Y-R (2018) A randomized controlled pilot trial of game-based training in individuals with spinocerebellar ataxia type 3. Sci Rep 8:1–7

    Google Scholar 

  47. Bunn LM, Marsden JF, Giunti P, Day BL (2015) Training balance with opto-kinetic stimuli in the home: a randomized controlled feasibility study in people with pure cerebellar disease. Clin Rehabil 29:143–153

    Article  PubMed  Google Scholar 

  48. Kaut O, Jacobi H, Coch C, Prochnicki A, Minnerop M, Klockgether T, Wüllner U (2014) A randomized pilot study of stochastic vibration therapy in spinocerebellar ataxia. Cerebellum 13:237–242

    Article  CAS  PubMed  Google Scholar 

  49. Chang Y-J, Chou C-C, Huang W-T, Lu C-S, Wong AM, Hsu M-J (2015) Cycling regimen induces spinal circuitry plasticity and improves leg muscle coordination in individuals with spinocerebellar ataxia. Arch Phys Med Rehabil 96:1006–1013

    Article  PubMed  Google Scholar 

  50. Manor B, Greenstein PE, Davila-Perez P, Wakefield S, Zhou J, Pascual-Leone A (2019) Repetitive transcranial magnetic stimulation in spinocerebellar ataxia: a pilot randomized controlled trial. Front Neurol 10:73

    Article  PubMed  PubMed Central  Google Scholar 

  51. França C, de Andrade DC, Silva V, Galhardoni R, Barbosa ER, Teixeira MJ and Cury RG (2020) Effects of cerebellar transcranial magnetic stimulation on ataxias: a randomized trial. Parkinsonism Relat Disord

  52. Benussi A, Dell’Era V, Cotelli MS, Turla M, Casali C, Padovani A, Borroni B (2017) Long term clinical and neurophysiological effects of cerebellar transcranial direct current stimulation in patients with neurodegenerative ataxia. Brain Stimul 10:242–250

    Article  PubMed  Google Scholar 

  53. Benussi A, Dell’Era V, Cantoni V, Bonetta E, Grasso R, Manenti R, Cotelli M, Padovani A, Borroni B (2018) Cerebello-spinal tDCS in ataxia: a randomized, double-blind, sham-controlled, crossover trial. Neurology 91:e1090–e1101

    Article  PubMed  Google Scholar 

  54. Burciu RG, Fritsche N, Granert O, Schmitz L, Spönemann N, Konczak J, Theysohn N, Gerwig M, van Eimeren T, Timmann D (2013) Brain changes associated with postural training in patients with cerebellar degeneration: a voxel-based morphometry study. J Neurosci 33:4594–4604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Keller JL, Bastian AJ (2014) A home balance exercise program improves walking in people with cerebellar ataxia. Neurorehabil Neural Repair 28:770–778

    Article  PubMed  PubMed Central  Google Scholar 

  56. Santos G, Zeigelboim DBS, Severiano M, Teive H, Liberalesso P, Marques J, Cordeiro M (2017) Feasibility of virtual reality-based balance rehabilitation in adults with spinocerebellar ataxia: a prospective observational study. Hear Balance Commun 15:244–251

    Article  Google Scholar 

  57. Zimmet AM, Cowan NJ, Bastian AJ (2019) Patients with cerebellar ataxia do not benefit from limb weights. Cerebellum 18:128–136

    Article  PubMed  PubMed Central  Google Scholar 

  58. Horiuchi M, Maki F, Yanagisawa T, Sugihara H, Takahashi Y, Ohashi K, Sasaka K, Nakajima Y (2002) Therapeutic efficacy of transcranial magnetic stimulation for amyotrophic lateral sclerosis and spinocerebellar degeneration. In: International Congress Series. Elsevier, pp 525–32

  59. Leonardi L, Aceto MG, Marcotulli C, Arcuria G, Serrao M, Pierelli F, Paone P, Filla A, Roca A, Casali C (2017) A wearable proprioceptive stabilizer for rehabilitation of limb and gait ataxia in hereditary cerebellar ataxias: a pilot open-labeled study. Neurol Sci 38:459–463

    Article  PubMed  Google Scholar 

  60. Nunes MB, Martinez ARM, Rezende TJR, Friedman JH, Lopes-Cendes I, D’Abreu A, França MC Jr (2015) Dystonia in Machado-Joseph disease: clinical profile, therapy and anatomical basis. Parkinsonism Relat Disord 21:1441–1447

    Article  PubMed  Google Scholar 

  61. Kanai K, Kuwabara S, Arai K, Sung JY, Ogawara K, Hattori T (2003) Muscle cramp in Machado-Joseph disease: altered motor axonal excitability properties and mexiletine treatment. Brain 126:965–973

    Article  PubMed  Google Scholar 

  62. Sacca F, Puorro G, Brunetti A, Capasso G, Cervo A, Cocozza S, de Leva M, Marsili A, Pane C, Quarantelli M (2015) A randomized controlled pilot trial of lithium in spinocerebellar ataxia type 2. J Neurol 262:149–153

    Article  CAS  PubMed  Google Scholar 

  63. Monte TL, Rieder C, Tort A, Rockenback I, Pereira M, Silveira I, Ferro A, Sequeiros J, Jardim LB (2003) Use of fluoxetine for treatment of Machado-Joseph disease: an open-label study. Acta Neurol Scand 107:207–210

    Article  CAS  PubMed  Google Scholar 

  64. Izumi S-I, Ando K, Ono M, Suzukamo Y, Michimata A, Fukuhara S (2007) Effect of coaching on psychological adjustment in patients with spinocerebellar degeneration: a pilot study. Clin Rehabil 21:987–996

    Article  PubMed  Google Scholar 

  65. Silva RCRd, Saute JAM, Silva ACFd, Coutinho ACdO, Saraiva-Pereira M, Jardim LB (2010) Occupational therapy in spinocerebellar ataxia type 3: an open-label trial. Braz J Med Biol Res 43:537–542

    Article  CAS  PubMed  Google Scholar 

  66. Nishizawa M, Onodera O, Hirakawa A, Shimizu Y, Yamada M (2020) Effect of rovatirelin in patients with cerebellar ataxia: two randomised double-blind placebo-controlled phase 3 trials. J Neurol Neurosurg Psychiatry 91:254–262

    Article  PubMed  Google Scholar 

  67. Kretschmer BD, Kratzer U, Schmidt WJ (1998) Riluzole, a glutamate release inhibitor, and motor behavior. Naunyn Schmiedebergs Arch Pharmacol 358:181–190

    Article  CAS  PubMed  Google Scholar 

  68. de Silva R, Greenfield J, Cook A, Bonney H, Vallortigara J, Hunt B, Giunti P (2019) Guidelines on the diagnosis and management of the progressive ataxias. Orphanet J Rare Dis 14:1–10

    Article  Google Scholar 

  69. Olsson C, Jansson HN, Swenson J (2016) The role of trehalose for the stabilization of proteins. J Phys Chem B 120:4723–4731

    Article  CAS  PubMed  Google Scholar 

  70. Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC (2007) Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and α-synuclein. J Biol Chem 282:5641–5652

    Article  CAS  PubMed  Google Scholar 

  71. Tanji K, Miki Y, Maruyama A, Mimura J, Matsumiya T, Mori F, Imaizumi T, Itoh K, Wakabayashi K (2015) Trehalose intake induces chaperone molecules along with autophagy in a mouse model of Lewy body disease. Biochem Biophys Res Commun 465:746–752

    Article  CAS  PubMed  Google Scholar 

  72. Felice VD, Quigley EM, Sullivan AM, O’Keeffe GW, O’Mahony SM (2016) Microbiota-gut-brain signalling in Parkinson’s disease: Implications for non-motor symptoms. Parkinsonism Relat Disord 27:1–8

    Article  PubMed  Google Scholar 

  73. Guillén-Rogel P, San Emeterio C, Marín PJ (2017) Associations between ankle dorsiflexion range of motion and foot and ankle strength in young adults. J Phys Ther Sci 29:1363–1367

    Article  PubMed  PubMed Central  Google Scholar 

  74. Warburton DE, Bredin SS, Horita LT, Zbogar D, Scott JM, Esch BT, Rhodes RE (2007) The health benefits of interactive video game exercise. Appl Physiol Nutr Metab 32:655–663

    Article  PubMed  Google Scholar 

  75. Reetz K, Costa AS, Mirzazade S, Lehmann A, Juzek A, Rakowicz M, Boguslawska R, Schöls L, Linnemann C, Mariotti C (2013) Genotype-specific patterns of atrophy progression are more sensitive than clinical decline in SCA1, SCA3 and SCA6. Brain 136:905–917

    Article  PubMed  Google Scholar 

  76. Velázquez-Pérez L, Rodríguez-Diaz JC, Rodríguez-Labrada R, Medrano-Montero J, Aguilera Cruz AB, Reynaldo-Cejas L, Góngora-Marrero M, Estupiñán-Rodríguez A, Vázquez-Mojena Y, Torres-Vega R (2019) Neurorehabilitation improves the motor features in prodromal SCA2: a randomized, controlled trial. Mov Disord 34:1060–1068

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This review was funded by Dana Impak Perdana Grant (DIP-2019-007) received by NMI from Universiti Kebangsaan Malaysia.

Funding

This review was funded by Dana Impak Perdana Grant (DIP-2019–007) received by NMI from Universiti Kebangsaan Malaysia.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Funding acquisition was performed by NMI and SA; Literature search was performed by KHY and SA. The first draft of this review was written by KHY, and all authors critically revised the work. All authors read and approved the final version of the review.

Corresponding author

Correspondence to Norlinah Mohamed Ibrahim.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yap, K.H., Azmin, S., Che Hamzah, J. et al. Pharmacological and non-pharmacological management of spinocerebellar ataxia: A systematic review. J Neurol 269, 2315–2337 (2022). https://doi.org/10.1007/s00415-021-10874-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-021-10874-2

Keywords

Navigation