Skip to main content
Log in

Cortical progression patterns in individual ALS patients across multiple timepoints: a mosaic-based approach for clinical use

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Introduction

The majority of imaging studies in ALS infer group-level imaging signatures from group comparisons, as opposed to estimating disease burden in individual patients. In a condition with considerable clinical heterogeneity, the characterisation of individual patterns of pathology is hugely relevant. In this study, we evaluate a strategy to track progressive cortical involvement in single patients by using subject-specific reference cohorts.

Methods

We have interrogated a multi-timepoint longitudinal dataset of 61 ALS patients to demonstrate the utility of estimating cortical disease burden and the expansion of cerebral atrophy over time. We contrast our strategy to the gold-standard approach to gauge the advantages and drawbacks of our method. We modelled the evolution of cortical integrity in a conditional growth model, in which we accounted for age, gender, disability, symptom duration, education and handedness. We hypothesised that the variance associated with demographic variables will be successfully eliminated in our approach.

Results

In our model, the only covariate which modulated the expansion of atrophy was motor disability as measured by the ALSFRS-r (t(153) = − 2.533, p = 0.0123). Using the standard approach, age also significantly influenced progression of CT change (t(153) = − 2.151, p = 0.033) demonstrating the validity and potential clinical utility of our approach.

Conclusion

Our strategy of estimating the extent of cortical atrophy in individual patients with ALS successfully corrects for demographic factors and captures relevant cortical changes associated with clinical disability. Our approach provides a framework to interpret single T1-weighted images in ALS and offers an opportunity to track cortical propagation patterns both at individual subject level and at cohort level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ALS:

Amyotrophic lateral sclerosis

ALSFRS-r:

Revised amyotrophic lateral sclerosis functional rating scale

ANOVA:

Analysis of variance

Cam-CAN:

Cambridge Centre for Ageing and Neuroscience

CIFTI:

Connectivity Informatics Technology Initiative

CGM:

Conditional growth model

CT:

Cortical thickness

DLPFC:

Dorsolateral prefrontal cortex

EMG:

Electromyography

EP:

Electrophysiology

FA:

Flip angle

FDR:

False discovery rate

FLAIR:

Fluid-attenuated inversion recovery

FOV:

Field of view

FTD:

Frontotemporal dementia

FWER:

Family-wise error rate

GRAPPA:

GeneRalised Autocalibrating Partial Parallel Acquisition

HC:

Healthy control

IR-SPGR:

Inversion recovery-prepared spoiled gradient-recalled echo

IR-TSE:

Inversion recovery turbo spin echo

LL:

Log-likelihoods

M:

Arithmetic mean

ML:

Machine learning

MPRAGE:

Magnetisation-prepared rapid gradient echo

MND:

Motor neuron disease

Mo:

Months

MS:

Multiple sclerosis

PLS:

Primary lateral sclerosis

QC:

Quality control

ROI:

Region of interest

SD:

Standard deviation

SENSE:

SENSitivity Encoding

SR:

Spatial resolution

T:

Tesla

T1w:

T1 weighted

TE:

Echo time

TI:

Inversion time

TMS:

Transcranial magnetic stimulation

TR:

Repetition time

UGM:

Unconditional growth model

UMM:

Unconditional means model

V:

Version

VS:

Versus

Y:

Year

References

  1. Eisen, A., et al., Amyotrophic lateral sclerosis: a long preclinical period? J Neurol Neurosurg Psychiatry, 2014.

  2. Querin G et al (2019) Presymptomatic spinal cord pathology in c9orf72 mutation carriers: A longitudinal neuroimaging study. Ann Neurol 86(2):158–167

    Article  CAS  PubMed  Google Scholar 

  3. Lulé, D.E., et al., Deficits in verbal fluency in presymptomatic C9orf72 mutation gene carriers-a developmental disorder. J Neurol Neurosurg Psychiatry, 2020.

  4. Miller T et al (2020) Phase 1–2 Trial of Antisense Oligonucleotide Tofersen for SOD1 ALS. N Engl J Med 383(2):109–119

    Article  CAS  PubMed  Google Scholar 

  5. Mitsumoto H, Brooks BR, Silani V (2014) Clinical trials in amyotrophic lateral sclerosis: why so many negative trials and how can trials be improved? Lancet Neurol 13(11):1127–1138

    Article  PubMed  Google Scholar 

  6. Chipika RH et al (2019) Tracking a Fast-Moving Disease: Longitudinal Markers, Monitoring, and Clinical Trial Endpoints in ALS. Front Neurol 10:229

    Article  PubMed  PubMed Central  Google Scholar 

  7. Schuster C et al (2015) Presymptomatic and longitudinal neuroimaging in neurodegeneration–from snapshots to motion picture: a systematic review. J Neurol Neurosurg Psychiatry 86(10):1089–1096

    Article  PubMed  Google Scholar 

  8. Proudfoot M, Bede P, Turner MR (2018) Imaging Cerebral Activity in Amyotrophic Lateral Sclerosis. Front Neurol 9:1148

    Article  PubMed  Google Scholar 

  9. Schuster C, Hardiman O, Bede P (2016) Development of an Automated MRI-Based Diagnostic Protocol for Amyotrophic Lateral Sclerosis Using Disease-Specific Pathognomonic Features: A Quantitative Disease-State Classification Study. PLoS ONE 11(12):e0167331

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chipika, R.H., et al., The presymptomatic phase of amyotrophic lateral sclerosis: are we merely scratching the surface? J Neurol, 2020.

  11. Devos D et al (2019) A ferroptosis-based panel of prognostic biomarkers for Amyotrophic Lateral Sclerosis. Sci Rep 9(1):2918

    Article  PubMed  PubMed Central  Google Scholar 

  12. Floeter MK, Gendron TF (2018) Biomarkers for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Associated With Hexanucleotide Expansion Mutations in C9orf72. Front Neurol 9:1063

    Article  PubMed  PubMed Central  Google Scholar 

  13. Blasco H et al (2018) A pharmaco-metabolomics approach in a clinical trial of ALS: Identification of predictive markers of progression. PLoS ONE 13(6):e0198116

    Article  PubMed  PubMed Central  Google Scholar 

  14. Omer T et al (2017) Neuroimaging patterns along the ALS-FTD spectrum: a multiparametric imaging study. Amyotroph Lateral Scler Frontotemporal Degener 18(7–8):611–623

    Article  CAS  PubMed  Google Scholar 

  15. Bede P, Querin G, Pradat PF (2018) The changing landscape of motor neuron disease imaging: the transition from descriptive studies to precision clinical tools. Curr Opin Neurol 31(4):431–438

    Article  PubMed  Google Scholar 

  16. Menke, R.A.L., et al., The two-year progression of structural and functional cerebral MRI in amyotrophic lateral sclerosis. NeuroImage: Clinical, 2018. 17: p. 953–961.

  17. Trojsi, F., et al., Neurodegeneration of brain networks in the amyotrophic lateral sclerosis-frontotemporal lobar degeneration (ALS-FTLD) continuum: evidence from MRI and MEG studies. CNS Spectr, 2017: p. 1–10.

  18. Trojsi, F., et al., Hippocampal connectivity in Amyotrophic Lateral Sclerosis (ALS): more than Papez circuit impairment. Brain Imaging Behav, 2020.

  19. Bede P et al (2016) The selective anatomical vulnerability of ALS: “disease-defining” and “disease-defying” brain regions. Amyotroph Lateral Scler Frontotemporal Degener 17(7–8):561–570

    Article  PubMed  Google Scholar 

  20. Christidi F et al (2018) Clinical and Radiological Markers of Extra-Motor Deficits in Amyotrophic Lateral Sclerosis. Front Neurol 9:1005

    Article  PubMed  PubMed Central  Google Scholar 

  21. Agosta F et al (2009) Longitudinal assessment of grey matter contraction in amyotrophic lateral sclerosis: A tensor based morphometry study. Amyotroph Lateral Scler 10(3):168–174

    Article  PubMed  Google Scholar 

  22. Bede P, Hardiman O (2018) Longitudinal structural changes in ALS: a three time-point imaging study of white and gray matter degeneration. Amyotroph Lateral Scler Frontotemporal Degener 19(3–4):232–241

    Article  PubMed  Google Scholar 

  23. Meier JM et al (2020) Connectome-Based Propagation Model in Amyotrophic Lateral Sclerosis. Ann Neurol 87(5):725–738

    Article  PubMed  PubMed Central  Google Scholar 

  24. Schuster C, Hardiman O, Bede P (2017) Survival prediction in Amyotrophic lateral sclerosis based on MRI measures and clinical characteristics. BMC Neurol 17(1):73

    Article  PubMed  PubMed Central  Google Scholar 

  25. Welsh RC, Jelsone-Swain LM, Foerster BR (2013) The utility of independent component analysis and machine learning in the identification of the amyotrophic lateral sclerosis diseased brain. Front Hum Neurosci 7:251

    Article  PubMed  PubMed Central  Google Scholar 

  26. Grollemund V et al (2019) Machine Learning in Amyotrophic Lateral Sclerosis: Achievements, Pitfalls, and Future Directions. Front Neurosci 13:135

    Article  PubMed  PubMed Central  Google Scholar 

  27. Querin G et al (2018) Multimodal spinal cord MRI offers accurate diagnostic classification in ALS. J Neurol Neurosurg Psychiatry 89(11):1220–1221

    Article  PubMed  Google Scholar 

  28. Foerster BR et al (2014) Multimodal MRI as a diagnostic biomarker for amyotrophic lateral sclerosis. Ann Clin Transl Neurol 1(2):107–114

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tahedl M (2020) Towards individualized cortical thickness assessment for clinical routine. J Transl Med 18(1):151

    Article  PubMed  PubMed Central  Google Scholar 

  30. Reuter M, Rosas HD, Fischl B (2010) Highly accurate inverse consistent registration: a robust approach. Neuroimage 53(4):1181–1196

    Article  PubMed  Google Scholar 

  31. van der Burgh HK et al (2020) Multimodal longitudinal study of structural brain involvement in amyotrophic lateral sclerosis. Neurology 94(24):e2592–e2604

    Article  PubMed  PubMed Central  Google Scholar 

  32. Brooks BR et al (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1(5):293–299

    Article  CAS  PubMed  Google Scholar 

  33. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I Segmentation and surface reconstruction. Neuroimage 9(2):179–194

    Article  CAS  PubMed  Google Scholar 

  34. Fischl, B., M.I. Sereno, and A.M. Dale, Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage, 1999. 9(2): p. 195–207.

  35. Fischl B (2012) FreeSurfer. Neuroimage 62(2):774–781

    Article  PubMed  Google Scholar 

  36. Dickie EW et al (2019) Ciftify: A framework for surface-based analysis of legacy MR acquisitions. Neuroimage 197:818–826

    Article  PubMed  Google Scholar 

  37. Schaefer A et al (2018) Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI. Cereb Cortex 28(9):3095–3114

    Article  PubMed  Google Scholar 

  38. Yeo BT et al (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106(3):1125–1165

    Article  PubMed  Google Scholar 

  39. McFarquhar M et al (2016) Multivariate and repeated measures (MRM): A new toolbox for dependent and multimodal group-level neuroimaging data. Neuroimage 132:373–389

    Article  PubMed  Google Scholar 

  40. Pinheiro, J., et al., nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1, 2016. R Core Team.

  41. Laird NM, Ware JH (1982) Random-effects models for longitudinal data. Biometrics 38(4):963–974

    Article  CAS  PubMed  Google Scholar 

  42. Luders, E., A.W. Toga, and P.M. Thompson, Why size matters: Differences in brain volume account for apparent sex differences in callosal anatomy: The sexual dimorphism of the corpus callosum. Neuroimage, 2013. 84c: p. 820–824.

  43. Bede P et al (2014) Sexual dimorphism in ALS: exploring gender-specific neuroimaging signatures. Amyotroph Lateral Scler Frontotemporal Degener 15(3–4):235–243

    Article  PubMed  Google Scholar 

  44. Menzler K et al (2011) Men and women are different: diffusion tensor imaging reveals sexual dimorphism in the microstructure of the thalamus, corpus callosum and cingulum. Neuroimage 54(4):2557–2562

    Article  CAS  PubMed  Google Scholar 

  45. Agosta F, Spinelli EG, Filippi M (2018) Neuroimaging in amyotrophic lateral sclerosis: current and emerging uses. Expert Rev Neurother 18(5):395–406

    Article  CAS  PubMed  Google Scholar 

  46. Christidi F et al (2018) The Clinical and Radiological Spectrum of Hippocampal Pathology in Amyotrophic Lateral Sclerosis. Front Neurol 9:523

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bede P et al (2019) Brainstem pathology in amyotrophic lateral sclerosis and primary lateral sclerosis: A longitudinal neuroimaging study. Neuroimage Clin 24:102054

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chipika RH et al (2020) “Switchboard” malfunction in motor neuron diseases: Selective pathology of thalamic nuclei in amyotrophic lateral sclerosis and primary lateral sclerosis. Neuroimage Clin 27:102300

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bede P et al (2020) Progressive brainstem pathology in motor neuron diseases: Imaging data from amyotrophic lateral sclerosis and primary lateral sclerosis. Data Brief 29:105229

    Article  PubMed  PubMed Central  Google Scholar 

  50. Feron M et al (2018) Extrapyramidal deficits in ALS: a combined biomechanical and neuroimaging study. J Neurol 265(9):2125–2136

    Article  PubMed  Google Scholar 

  51. Finegan E et al (2019) Primary lateral sclerosis: a distinct entity or part of the ALS spectrum? Amyotroph Lateral Scler Frontotemporal Degener 20(3–4):133–145

    Article  PubMed  Google Scholar 

  52. Lebouteux MV et al (2014) Revisiting the spectrum of lower motor neuron diseases with snake eyes appearance on magnetic resonance imaging. Eur J Neurol 21(9):1233–1241

    Article  PubMed  Google Scholar 

  53. Burke T et al (2016) Measurement of Social Cognition in Amyotrophic Lateral Sclerosis: A Population Based Study. PLoS ONE 11(8):e0160850

    Article  PubMed  PubMed Central  Google Scholar 

  54. Christidi F et al (2020) Neuroimaging data indicate divergent mesial temporal lobe profiles in amyotrophic lateral sclerosis, Alzheimer’s disease and healthy aging. Data Brief 28:104991

    Article  PubMed  Google Scholar 

  55. Abidi, M., et al., Adaptive functional reorganization in amyotrophic lateral sclerosis: coexisting degenerative and compensatory changes. Eur J Neurol, 2019.

  56. Yunusova Y et al (2019) Clinical Measures of Bulbar Dysfunction in ALS. Front Neurol 10:106

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hardiman, O., et al., Neurodegenerative Disorders: A Clinical Guide. 2016 ed. 2016, Springer Cham Heidelberg New York Dordrecht London© Springer International Publishing Switzerland 2016: Springer International Publishing. 1–336.

  58. Foerster BR et al (2013) Diagnostic accuracy of diffusion tensor imaging in amyotrophic lateral sclerosis: a systematic review and individual patient data meta-analysis. Acad Radiol 20(9):1099–1106

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bede P et al (2018) Connectivity-based characterisation of subcortical grey matter pathology in frontotemporal dementia and ALS: a multimodal neuroimaging study. Brain Imaging Behav 12(6):1696–1707

    Article  PubMed  Google Scholar 

  60. Westeneng HJ et al (2016) Widespread structural brain involvement in ALS is not limited to the C9orf72 repeat expansion. J Neurol Neurosurg Psychiatry 87(12):1354–1360

    Article  PubMed  Google Scholar 

  61. Finegan E et al (2019) The clinical and radiological profile of primary lateral sclerosis: a population-based study. J Neurol 266(11):2718–2733

    Article  PubMed  Google Scholar 

  62. Agosta F et al (2016) Structural brain correlates of cognitive and behavioral impairment in MND. Hum Brain Mapp 37(4):1614–1626

    Article  PubMed  PubMed Central  Google Scholar 

  63. Finegan E et al (2019) Widespread subcortical grey matter degeneration in primary lateral sclerosis: a multimodal imaging study with genetic profiling. Neuroimage Clin 24:102089

    Article  PubMed  PubMed Central  Google Scholar 

  64. Bede P et al (2017) Virtual brain biopsies in amyotrophic lateral sclerosis: Diagnostic classification based on in vivo pathological patterns. Neuroimage Clin 15:653–658

    Article  PubMed  PubMed Central  Google Scholar 

  65. Grollemund V et al (2020) Development and validation of a 1-year survival prognosis estimation model for Amyotrophic Lateral Sclerosis using manifold learning algorithm UMAP. Sci Rep 10(1):13378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Agosta F et al (2010) MRI predictors of long-term evolution in amyotrophic lateral sclerosis. Eur J Neurosci 32(9):1490–1496

    Article  PubMed  Google Scholar 

  67. Westeneng, H.J., et al., Prognosis for patients with amyotrophic lateral sclerosis: development and validation of a personalised prediction model. Lancet Neurol, 2018.

  68. Elamin M et al (2015) Predicting prognosis in amyotrophic lateral sclerosis: a simple algorithm. J Neurol 262(6):1447–1454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Filippi M et al (1998) Guidelines for using quantitative measures of brain magnetic resonance imaging abnormalities in monitoring the treatment of multiple sclerosis. Ann Neurol 43(4):499–506

    Article  CAS  PubMed  Google Scholar 

  70. Househam E, Swash M (2000) Diagnostic delay in amyotrophic lateral sclerosis: what scope for improvement? J Neurol Sci 180(1–2):76–81

    Article  CAS  PubMed  Google Scholar 

  71. Kraemer M, Buerger M, Berlit P (2010) Diagnostic problems and delay of diagnosis in amyotrophic lateral sclerosis. Clin Neurol Neurosurg 112(2):103–105

    Article  PubMed  Google Scholar 

  72. Zoccolella S et al (2006) Predictors of delay in the diagnosis and clinical trial entry of amyotrophic lateral sclerosis patients: a population-based study. J Neurol Sci 250(1–2):45–49

    Article  PubMed  Google Scholar 

  73. Elamin M et al (2017) Identifying behavioural changes in ALS: Validation of the Beaumont Behavioural Inventory (BBI). Amyotroph Lateral Scler Frontotemporal Degener 18(1–2):68–73

    Article  PubMed  Google Scholar 

  74. Cedarbaum, J.M., et al., The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase III). J Neurol Sci, 1999. 169(1–2): p. 13–21.

  75. Burke T et al (2017) Visual encoding, consolidation, and retrieval in amyotrophic lateral sclerosis: executive function as a mediator, and predictor of performance. Amyotroph Lateral Scler Frontotemporal Degener 18(3–4):193–201

    Article  PubMed  Google Scholar 

  76. Brettschneider J et al (2014) TDP-43 pathology and neuronal loss in amyotrophic lateral sclerosis spinal cord. Acta Neuropathol 128(3):423–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Brettschneider J et al (2013) Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann Neurol 74(1):20–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Elamin M et al (2013) Cognitive changes predict functional decline in ALS: a population-based longitudinal study. Neurology 80(17):1590–1597

    Article  PubMed  Google Scholar 

  79. Westeneng HJ et al (2015) Subcortical structures in amyotrophic lateral sclerosis. Neurobiol Aging 36(2):1075–1082

    Article  PubMed  Google Scholar 

  80. Pradat PF, El Mendili MM (2014) Neuroimaging to investigate multisystem involvement and provide biomarkers in amyotrophic lateral sclerosis. Biomed Res Int 2014:467560

    Article  PubMed  PubMed Central  Google Scholar 

  81. Pradat P-F et al (2009) Extrapyramidal stiffness in patients with amyotrophic lateral sclerosis. Mov Disord 24(14):2143–2148

    Article  PubMed  Google Scholar 

  82. Schuster C et al (2016) The segmental diffusivity profile of amyotrophic lateral sclerosis associated white matter degeneration. Eur J Neurol 23(8):1361–1371

    Article  CAS  PubMed  Google Scholar 

  83. Christidi F et al (2014) Uncinate fasciculus microstructure and verbal episodic memory in amyotrophic lateral sclerosis: a diffusion tensor imaging and neuropsychological study. Brain Imaging Behav 8(4):497–505

    Article  PubMed  Google Scholar 

  84. Agosta F et al (2014) Intrahemispheric and interhemispheric structural network abnormalities in PLS and ALS. Hum Brain Mapp 35(4):1710–1722

    Article  PubMed  Google Scholar 

  85. Agosta F et al (2014) Resting state functional connectivity alterations in primary lateral sclerosis. Neurobiol Aging 35(4):916–925

    Article  PubMed  Google Scholar 

  86. Nasseroleslami B et al (2019) Characteristic Increases in EEG Connectivity Correlate With Changes of Structural MRI in Amyotrophic Lateral Sclerosis. Cereb Cortex 29(1):27–41

    Article  PubMed  Google Scholar 

  87. Lule D et al (2010) Neuroimaging of multimodal sensory stimulation in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 81(8):899–906

    Article  PubMed  Google Scholar 

  88. Lule D et al (2007) Brain responses to emotional stimuli in patients with amyotrophic lateral sclerosis (ALS). J Neurol 254(4):519–527

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for all patients with ALS for agreeing to participate in this research study, and we are also indebted to their caregivers and families for their support. Without their generosity, this study would have not been possible. We also thank all patients who expressed interest in this study, but were unable to participate for medical or logistical reasons. We also thank the Irish Motor Neuron Disease Association for facilitating recruitment and providing unrelenting support to all patients with ALS and PLS.

Funding

Doctor Marlene Tahedl is funded by the Deutsche Multiple Sklerose Gesellschaft (DMSG), Grant number 2018_DMSG_08. Professor Peter Bede is supported by the Health Research Board (HRB EIA-2017-019), Spastic Paraplegia Foundation, Inc. (SPF), the EU Joint Programme—Neurodegenerative Disease Research (JPND), the Andrew Lydon scholarship, the Irish Institute of Clinical Neuroscience (IICN) and the Iris O'Brien Foundation. The sponsors of the authors had no bearing on the opinions expressed herein.

Author information

Authors and Affiliations

Authors

Contributions

MT and PB were involved in the conceptualisation of the study, neuroimaging analyses and drafting the manuscript. RC, JL, SLHS and OH contributed to clinical profiling and data acquisition. MT, RC, JL, SLHS, OH and PB were all involved in the revision of the manuscript for intellectual content.

Corresponding author

Correspondence to Peter Bede.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare.

Ethics approval

All participants provided informed consent in accordance with the approval of the Ethics (Medical Research) Committee—Beaumont Hospital, Dublin, Ireland.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahedl, M., Chipika, R.H., Lope, J. et al. Cortical progression patterns in individual ALS patients across multiple timepoints: a mosaic-based approach for clinical use. J Neurol 268, 1913–1926 (2021). https://doi.org/10.1007/s00415-020-10368-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-020-10368-7

Keywords

Navigation