Skip to main content

Advertisement

Log in

Antibodies against the node of Ranvier: a real-life evaluation of incidence, clinical features and response to treatment based on a prospective analysis of 1500 sera

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Introduction

IgG4 antibodies against neurofascin (Nfasc155 and Nfasc140/186), contactin (CNTN1) and contactin-associated protein (Caspr1) are described in specific subtypes of chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). Our objective was to assess, in a real-life practice, the incidence, the clinical features and the response to treatment of these forms of CIDP.

Methods

1500 sera of patients suspected of having CIDP from France, Belgium and Switzerland were prospectively tested using a flow cytometry technique. The characteristics of patients with antibodies against the node of Ranvier were compared to 100 seronegative CIDP from our department.

Results

IgG4 antibodies against Nfasc155, CNTN1, and Caspr1 were, respectively, detected in 15 (prevalence 1%), 10 (0.7%) and 2 (0.2%) sera. Antibodies specific of the Nfasc140/186 were not detected.

All subjects with antibodies against the node of Ranvier fulfilled diagnostic criteria for CIDP.

CIDP with anti-Nfasc155 were younger, had more sensory ataxia and postural tremor than seronegative CIDP. CIDP with anti-CNTN1 had more frequent subacute onset and facial paralysis, commoner renal involvement with membranous glomerulonephritis and greater disability, than seronegative CIDP. CIDP with anti-Caspr1 had more frequent respiratory failure and cranial nerve involvement but not more neuropathic pain than seronegative CIDP. Intravenous immunoglobulins were ineffective in most seropositive patients. Rituximab produced dramatic improvement in disability and decreased antibodies titres in 13 seropositive patients (8 with anti-Nfasc155 and 5 with anti-CNTN1 antibodies).

Conclusions

Although rare, anti-paranodal antibodies are clinically valuable, because they are associated with specific phenotypes and therapeutic response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Joint Task Force of the EFNS and the PNS (2010) European Federation of Neurological Societies/Peripheral Nerve Society Guideline on management of chronic inflammatory demyelinating polyradiculoneuropathy: report of a joint task force of the European Federation of Neurological Societies and the Peripher. J Peripher Nerv Syst 15:185–195

    Article  Google Scholar 

  2. Querol L, Nogales-Gadea G, Rojas-Garcia R et al (2013) Antibodies to contactin-1 in chronic inflammatory demyelinating polyneuropathy. Ann Neurol 73:370–380

    Article  CAS  Google Scholar 

  3. Ng JKM, Malotka J, Kawakami N et al (2012) Neurofascin as a target for autoantibodies in peripheral neuropathies. Neurology 79:2241–2248

    Article  CAS  Google Scholar 

  4. Doppler K, Appeltshauser L, Villmann C et al (2016) Auto-antibodies to contactin-associated protein 1 (Caspr) in two patients with painful inflammatory neuropathy. Brain 139:2617–2630. https://doi.org/10.1093/brain/aww189

    Article  PubMed  Google Scholar 

  5. Delmont E, Manso C, Querol L et al (2017) Autoantibodies to nodal isoforms of neurofascin in chronic inflammatory demyelinating polyneuropathy. Brain 140:1851–1858. https://doi.org/10.1093/brain/awx124

    Article  PubMed  Google Scholar 

  6. Vallat J-M, Yuki N, Sekiguchi K et al (2017) Paranodal lesions in chronic inflammatory demyelinating polyneuropathy associated with anti-neurofascin 155 antibodies. Neuromuscul Disord 27:290–293. https://doi.org/10.1016/j.nmd.2016.10.008

    Article  PubMed  Google Scholar 

  7. Koike H, Kadoya M, Kaida K et al (2017) Paranodal dissection in chronic inflammatory demyelinating polyneuropathy with anti-neurofascin-155 and anti-contactin-1 antibodies. J Neurol Neurosurg Psychiatry 88:465–473. https://doi.org/10.1136/jnnp-2016-314895

    Article  PubMed  Google Scholar 

  8. Manso C, Querol L, Mekaouche M et al (2016) Contactin-1 IgG4 antibodies cause paranode dismantling and conduction defects. Brain. https://doi.org/10.1093/brain/aww062

    Article  PubMed  Google Scholar 

  9. Manso C, Illa I, Devaux JJ et al (2019) Anti-neurofascin-155 IgG4 antibodies prevent paranodal complex formation in vivo. J Clin Invest 129:2222–2236

    Article  Google Scholar 

  10. Cortese A, Lombardi R, Briani C et al (2020) Antibodies to neurofascin, contactin-1, and contactin-associated protein 1 in CIDP: clinical relevance of IgG isotype. Neurol Neuroimmunol neuroinflamm. https://doi.org/10.1212/NXI.0000000000000639

    Article  PubMed  Google Scholar 

  11. Miura Y, Devaux JJ, Fukami Y et al (2015) Contactin 1 IgG4 associates to chronic inflammatory demyelinating polyneuropathy with sensory ataxia. Brain 138:1484–1491. https://doi.org/10.1093/brain/awv054

    Article  PubMed  PubMed Central  Google Scholar 

  12. Doppler K, Appeltshauser L, Wilhelmi K et al (2015) Destruction of paranodal architecture in inflammatory neuropathy with anti-contactin-1 autoantibodies. J Neurol Neurosurg Psychiatry 86:720–728. https://doi.org/10.1136/jnnp-2014-309916

    Article  PubMed  Google Scholar 

  13. Ogata H, Yamasaki R, Hiwatashi A et al (2015) Characterization of IgG4 anti-neurofascin 155 antibody-positive polyneuropathy. Ann Clin Transl Neurol 2:960–971. https://doi.org/10.1002/acn3.248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kadoya M, Kaida K, Koike H et al (2016) IgG4 anti-neurofascin155 antibodies in chronic inflammatory demyelinating polyradiculoneuropathy: Clinical significance and diagnostic utility of a conventional assay. J Neuroimmunol 301:16–22. https://doi.org/10.1016/j.jneuroim.2016.10.013

    Article  CAS  PubMed  Google Scholar 

  15. Devaux J, Yumako M, Yumako F et al (2016) Neurofascin-155 IgG4 in chronic inflammatory demyelinating polyneuropathy. Neurology 86:800–807. https://doi.org/10.1212/WNL.0000000000002418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Querol L, Nogales-Gadea G, Rojas-Garcia R et al (2014) Neurofascin IgG4 antibodies in CIDP associate with disabling tremor and poor response to IVIg. Neurology 82:879–886. https://doi.org/10.1212/WNL0000000000000205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Garg N, Park SB, Yiannikas C et al (2017) Neurofascin-155 IGG4 neuropathy: pathophysiological insights, spectrum of clinical severity and response to treatment. Muscle Nerve 57:848–851. https://doi.org/10.1002/mus.26010

    Article  CAS  PubMed  Google Scholar 

  18. Burnor E, Yang L, Zhou H et al (2018) Neurofascin antibodies in autoimmune, genetic, and idiopathic neuropathies. Neurology 90:e31–e38. https://doi.org/10.1212/WNL.0000000000004773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Graham RC, Hughes RAC (2006) A modified peripheral neuropathy scale: the Overall Neuropathy Limitations Scale. J Neurol Neurosurg Psychiatry 77:973–976

    Article  CAS  Google Scholar 

  20. van Swieten JC, Koudstaal PJ, Visser MC et al (1988) Interobserver agreement for the assessment of handicap in stroke patients. Stroke 19:604–607

    Article  Google Scholar 

  21. Kouton L, Boucraut J, Devaux J et al (2020) Clinical Neurophysiology Electrophysiological features of chronic inflammatory demyelinating polyradiculoneuropathy associated with IgG4 antibodies targeting neurofascin 155 or contactin 1 glycoproteins. Clin Neurophysiol 131:921–927. https://doi.org/10.1016/j.clinph.2020.01.013

    Article  PubMed  Google Scholar 

  22. Demichelis C, Franciotta D, Cortese A et al (2018) Remarkable rituximab response on tremor related to acute-onset chronic inflammatory demyelinating polyradiculoneuropathy in an antineurofascin155 immunoglobulin G4-seropositive patient. Mov Disord Clin Pract 5:559–560. https://doi.org/10.1002/mdc3.12662

    Article  PubMed  PubMed Central  Google Scholar 

  23. Briani C, Salvalaggio A, Ruiz M et al (2019) Tongue tremor in neurofascin-155 IgG4 seropositive chronic inflammatory polyradiculoneuropathy. J Neuroimmunol 330:178–180. https://doi.org/10.1016/j.jneuroim.2019.01.017

    Article  CAS  PubMed  Google Scholar 

  24. Querol L, Rojas-Garcia R, Diaz-Manera J et al (2015) Rituximab in treatment-resistant CIDP with antibodies against paranodal proteins. Neurol Neuroimmunol Neuroinflamm 2:e149–e149. https://doi.org/10.1212/NXI.0000000000000149

    Article  PubMed  PubMed Central  Google Scholar 

  25. Taieb G, Le Quintrec M, Pialot A et al (2018) “Neuro-renal syndrome” related to anti-contactin-1 antibodies. Muscle Nerve 59:E19–E21. https://doi.org/10.1002/mus.26392

    Article  Google Scholar 

  26. Hashimoto Y, Ogata H, Yamasaki R et al (2018) chronic inflammatory demyelinating polyneuropathy with concurrent membranous nephropathy: an anti-paranode and podocyte protein antibody study and literature survey. Front Neurol 9:1–10. https://doi.org/10.3389/fneur.2018.00997

    Article  Google Scholar 

  27. Francis JM, Beck LH, Salant DJ (2016) Membranous nephropathy: a journey from bench to bedside. Am J Kidney Dis 68:138–147. https://doi.org/10.1053/j.ajkd.2016.01.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Reid RA, Bronson DD, Young KM, Hemperly JJ (1994) Identification and characterization of the human cell adhesion molecule contactin. Brain Res Mol Brain Res 21:1–8

    Article  CAS  Google Scholar 

  29. Sistani L, Rodriguez PQ, Hultenby K et al (2013) Neuronal proteins are novel components of podocyte major processes and their expression in glomerular crescents supports their role in crescent formation. Kidney Int 83:63–71. https://doi.org/10.1038/ki.2012.321

    Article  CAS  PubMed  Google Scholar 

  30. Boyer O, Nevo F, Plaisier E et al (2011) INF2 mutations in charcot–Marie–Tooth disease with glomerulopathy. N Engl J Med 365:2377–2388. https://doi.org/10.1056/NEJMoa1109122

    Article  CAS  PubMed  Google Scholar 

  31. Fujita A, Ogata H, Yamasaki R et al (2018) Parallel fluctuation of anti-neurofascin 155 antibody levels with clinico-electrophysiological findings in patients with chronic inflammatory demyelinating polyradiculoneuropathy. J Neurol Sci 384:107–112. https://doi.org/10.1016/j.jns.2017.11.035

    Article  CAS  PubMed  Google Scholar 

  32. Doppler K, Stengel H, Appeltshauser L et al (2018) Neurofascin-155 IgM autoantibodies in patients with inflammatory neuropathies. J Neurol Neurosurg Psychiatry. https://doi.org/10.1136/jnnp-2018-318170

    Article  PubMed  Google Scholar 

  33. Stengel H, Vural A, Brunder AM et al (2019) Anti-pan-neurofascin IgG3 as a marker of fulminant autoimmune neuropathy. Neurol Neuroimmunol NeuroInflamm 6:1–11. https://doi.org/10.1212/NXI.0000000000000603

    Article  Google Scholar 

Download references

Funding

Part of the antibodies assessment have been funded by a grant from CSL Behring France

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilien Delmont.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethics approval

This study has been approved by the ethics committee of Assistance Publique des Hôpitaux de Marseille (Agreement Number PADS19-365) and have been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments

Consent to participate

All persons involved in this study gave inform consent for participation and publication

Availability of data and material

Data are available on demands.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delmont, E., Brodovitch, A., Kouton, L. et al. Antibodies against the node of Ranvier: a real-life evaluation of incidence, clinical features and response to treatment based on a prospective analysis of 1500 sera. J Neurol 267, 3664–3672 (2020). https://doi.org/10.1007/s00415-020-10041-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-020-10041-z

Keywords

Navigation