Skip to main content
Log in

Assessing the influence of age and gender on the phenotype of myotonic dystrophy type 2

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

This study aims to provide a detailed clinical characterization of a large cohort of myotonic dystrophy type 2 (DM2) patients investigating the influence of age and gender as modifying factors of DM2 phenotype. A retrospective study was conducted on 307 patients with genetically confirmed DM2. The following data were analyzed: (1) demographics, (2) clinical features (first symptom, muscular complaints, and multisystemic involvement), (3) diagnostics (serological tests, electromyography, and muscle biopsy). In this cohort (186 females, 121 males), a proximal weakness was the leading symptom at onset (55.4%), followed by myalgia (35.5%) and myotonia (25.4%). Proximal weakness was more common in women than men (64.9 vs. 43.8%, p = 0.0006), whereas being male was associated with higher odds for developing myalgia [OR 2.94 (95% CI 1.53–5.67)]. Patients with muscle weakness at onset were older than those with myalgia and myotonia (p < 0.0001), while each additional disease year was associated with 10% decrease in the odds of developing myotonia [OR 0.9 (95% CI 0.87–0.93)] and 6% decrease of myalgia [OR 0.94 (95% CI 0.91–0.97)]. Cataract and thyroid diseases occurred more frequently in women (p = 0.002 and p = 0.002, respectively). Early onset of DM2 is an independent risk factor for the occurrence of multisystemic involvement [OR 0.94 (95% CI 0.90–0.98)]. In this updated clinical description of DM2 emerges a profound gender and age influence on the phenotype, emphasizing that female gender and ageing may be associated with a higher disease burden. These age- and gender-specific differences should be considered in diagnostics, management, and future clinical studies of DM2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Thornton CA, Griggs RC, Moxley RT (1994) Myotonic dystrophy with no trinucleotide repeat expansion. Ann Neurol 35:269–272

    Article  CAS  PubMed  Google Scholar 

  2. Ricker K, Koch MC, Lehmann-Horn F et al (1994) Proximal myotonic myopathy: a new dominant disorder with myotonia, muscle weakness, and cataracts. Neurology 44:1448

    Article  CAS  PubMed  Google Scholar 

  3. Liquori CL, Ricker K, Moseley ML et al (2001) Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 293:864–867

    Article  CAS  PubMed  Google Scholar 

  4. Suominen T, Bachinski LL, Auvinen S et al (2011) Population frequency of myotonic dystrophy: higher than expected frequency of myotonic dystrophy type 2 (DM2) mutation in Finland. Eur J Hum Genet 19:776–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vanacore N, Rastelli E, Antonini G et al (2016) An age-standardized prevalence estimate and a sex and age distribution of myotonic dystrophy types 1 and 2 in the Rome Province, Italy. Neuroepidemiology 46:191–197

    Article  PubMed  Google Scholar 

  6. Day J, Ricker K, Jacobsen JF et al (2003) Myotonic dystrophy type 2: molecular, diagnostic and clinical spectrum. Neurology 60:657–664

    Article  CAS  PubMed  Google Scholar 

  7. Meola G, Sansone V, Radice S, Skradski S, Ptacek L (1996) A family with an unusual myotonic and myopathic phenotype and no CTG expansion (proximal myotonic myopathy syndrome): a challenge for future molecular studies. Neuromuscul Disord 6:143–150

    Article  CAS  PubMed  Google Scholar 

  8. Bassez G, Attarian S, Laforêt P et al (2001) Proximal myotonial myopathy (PROMM): clinical and histology study. Rev Neurol (Paris) 157:209–218

    CAS  Google Scholar 

  9. Udd B, Krahe R, Wallgren-Pettersson C, Falck B, Kalimo H (1997) Proximal myotonic dystrophy- a family with autosomal dominant muscular dystrophy, cataract, hearing loss and hypogonadism: heterogeneity of proximal myotonic syndromes? Neuromuscul Disord 7:217–228

    Article  CAS  PubMed  Google Scholar 

  10. Hilbert JE, Ashizawa T, Day JW et al (2013) Diagnostic odyssey of patients with myotonic dystrophy. J Neurol 260:2497–2504

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sansone V, Brigonzi E, Schoser B et al (2013) The frequency and severity of cardiac involvement in myotonic dystrophy type 2 (DM2): long-term outcomes. Int J Cardiol 168:1147–1153

    Article  CAS  PubMed  Google Scholar 

  12. Passeri E, Bugiardini E, Sansone VA et al (2015) Gonadal failure is associated with visceral adiposity in myotonic dystrophies. Eur J Clin Investig 45:702–710

    Article  CAS  Google Scholar 

  13. Tieleman AA, van Vliet J, Jansen JB, van der Kooi AJ, Borm GF, van Engelen BG (2008) Gastrointestinal involvement is frequent in Myotonic Dystrophy type 2. Neuromuscul Disord 18:646–649

    Article  PubMed  Google Scholar 

  14. Schneider-Gold C, Bellenberg B, Prehn C et al (2015) Cortical and subcortical grey and white matter atrophy in myotonic dystrophies type 1 and 2 is associated with cognitive impairment, depression and daytime sleepiness. PLoS One 10:e0130352

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gadalla SM, Lund M, Pfeiffer RM et al (2011) Cancer risk among patients with myotonic muscular dystrophy. JAMA 306:2480–2486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dogan C, De Antonio M, Hamroun D et al (2016) Gender as a modifying factor influencing myotonic dystrophy type 1 phenotype severity and mortality: a nationwide multiple databases cross-sectional observational study. PLoS One 11:e0148264

    Article  PubMed  PubMed Central  Google Scholar 

  17. Schoser B, Schneider-Gold C, Kress W et al (2004) Muscle pathology in 57 patients with myotonic dystrophy type 2. Muscle Nerve 29:275–281

    Article  PubMed  Google Scholar 

  18. Udd B, Meola G, Krahe R et al (2006) 140th ENMC International Workshop: myotonic dystrophy DM2/PROMM and other myotonic dystrophies with guidelines on management. Neuromuscul Disord 16:403–413

    Article  CAS  PubMed  Google Scholar 

  19. Moxley RT 3rd, Meola G, Udd B, Ricker K (2002) Report of the 84th ENMC workshop: PROMM (proximal myotonic myopathy) and other myotonic dystrophy like syndromes: 2nd workshop. 13–15th October, 2000, Loosdrecht, The Netherlands. Neuromuscul Disord 12:306–317

    Article  PubMed  Google Scholar 

  20. Sipilä S, Narici M, Kjaer M et al (2013) Sex hormones and skeletal muscle weakness. Biogerontology 14:231–245

    Article  PubMed  Google Scholar 

  21. Bugiardini E, Rivolta I, Binda A et al (2015) SCN4A mutation as modifying factor of myotonic dystrophy type 2 phenotype. Neuromuscul Disord 25:301–307

    Article  CAS  PubMed  Google Scholar 

  22. Ursu SF, Alekov A, Mao NH, Jurkat-Rott K (2012) ClC1 chloride channel in myotonic dystrophy type 2 and ClC1 splicing in vitro. Acta Myol 31:144–153

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Moshourab R, Palada V, Grunwald S, Grieben U, Lewin GR, Spuler S (2016) A molecular signature of myalgia in myotonic dystrophy 2. EBioMedicine 7:205–211

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mateos-Aierdi AJ, Goicoechea M, Aiastui A, Fernández-Torrón R, Garcia-Puga M, Matheu A et al (2015) Muscle wasting in myotonic dystrophies: a model of premature aging. Front Aging Neurosci 7:125

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kanthan GL, Wang JJ, Burlutsky G, Rochtchina E, Cumming RG, Mitchell P (2010) Exogenous oestrogen exposure, female reproductive factors and the long-term incidence of cataract: the Blue Mountains Eye Study. Acta Ophthalmol 88:773–778

    Article  PubMed  Google Scholar 

  26. Zetterberg M, Celojevic D (2015) Gender and cataract-the role of estrogen. Curr Eye Res 40:176–190

    Article  CAS  PubMed  Google Scholar 

  27. Dahlqvist JR, Ørngreen MC, Witting N, Vissing J (2015) Endocrine function over time in patients with myotonic dystrophy type 1. Eur J Neurol 22:116–122

    Article  CAS  PubMed  Google Scholar 

  28. Sansone V, Griggs RC, Moxley RT 3rd (2000) Hypothyroidism unmasking proximal myotonic myopathy. Neuromuscul Disord 10:165–172

    Article  CAS  PubMed  Google Scholar 

  29. Garmendia Madariaga A, Santos Palacios S, Guillén-Grima F, Galofré JC (2014) The incidence and prevalence of thyroid dysfunction in Europe: a meta-analysis. J Clin Endocrinol Metab 99:923–931

    Article  PubMed  Google Scholar 

  30. Hilbert JE, Barohn RJ, Clemens PR et al (2017) High frequency of gastrointestinal manifestations in myotonic dystrophy type 1 and type 2. Neurology. https://doi.org/10.1212/WNL.0000000000004420

    PubMed  Google Scholar 

  31. Neuhauser H, Thamm M, Ellert U (2013) Blood pressure in Germany 2008–2011: results of the German Health Interview and Examination Survey for Adults (DEGS1). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 56:795–801

    Article  CAS  PubMed  Google Scholar 

  32. Minnerop M, Weber B, Schoene-Bake JC et al (2011) The brain in myotonic dystrophy 1 and 2: evidence for a predominant white matter disease. Brain 134:3530–3546

    Article  PubMed  Google Scholar 

  33. Sansone V, Gagnon C (2015) 207th ENMC Workshop on chronic respiratory insufficiency in myotonic dystrophies: management and implications for research, 27–29 June 2014, Naarden, The Netherlands. Neuromuscul Disord 25:432–442

    Article  CAS  PubMed  Google Scholar 

  34. Lam EM, Shepard PW, St Louis EK et al (2013) Restless legs syndrome and daytime sleepiness are prominent in myotonic dystrophy type 2. Neurology 81:157–164

    Article  PubMed  PubMed Central  Google Scholar 

  35. Romigi A, Albanese M, Placidi F et al (2014) Sleep disorders in myotonic dystrophy type 2: a controlled polysomnographic study and self-reported questionnaires. Eur J Neurol 21(6):929–934

    Article  CAS  PubMed  Google Scholar 

  36. Heatwole C, Johnson N, Goldberg B, Martens W, Moxley R 3rd (2011) Laboratory abnormalities in patients with myotonic dystrophy type 2. Arch Neurol 68:1180–1184

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all DM2 patients and family members for their long-term commitment and support for all our clinical studies. In particular, we thank for the strong and continuous support of the DM patient diagnosis subgroup of the Deutsche Gesellschaft für Muskelkranke e.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedikt Schoser.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical standards

This study was carried in accordance with ethical standard as set out in the Declaration of Helsinki. The study was approved by the local ethic committee (Document no. 107-01,292-07,477-13).

Funding

No funding has been received for the present study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montagnese, F., Mondello, S., Wenninger, S. et al. Assessing the influence of age and gender on the phenotype of myotonic dystrophy type 2. J Neurol 264, 2472–2480 (2017). https://doi.org/10.1007/s00415-017-8653-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-017-8653-2

Keywords

Navigation