Skip to main content
Log in

External input for gait in people with Parkinson’s disease with and without freezing of gait: One size does not fit all

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Cueing or feedback provided when gait deviates from a predefined goal (intelligent input) can now be provided with wearable technology for Parkinson’s disease (PD). As people with and without freezing of gait (FOG) have distinct cognitive profiles, they may respond differently to various types of input. This study compared the effects of four input modalities during prolonged walking and explored the relationship with cognition, subjective preference, and FOG. Participants (15 with and 13 without FOG) walked 30 min while exposed to continuous cueing; intelligent cueing; intelligent feedback; or no input. Cueing consisted of metronome beats matched to comfortable cadence. Intelligent input represented bouts of ten beats indicating comfortable cadence (intelligent cueing) or an instruction to adapt gait speed (intelligent feedback) when cadence deviated from the comfortable target. Preference for one condition over the other was gathered. Freezers produced most stable gait under continuous cueing, but the majority favored intelligent feedback. Non-freezers showed no differences between conditions, but gait was more stable under intelligent input than in freezers. Interestingly, lower cognitive scores were related to worse gait during intelligent input, most prominently seen in freezers. These results suggest that cognitive ability is an aspect to take into account when deciding on the most appropriate cueing modality in different PD subgroups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amboni M, Stocchi F, Abbruzzese G, Morgante L, Onofrj M, Ruggieri S, Tinazzi M, Zappia M, Attar M, Colombo D, Simoni L, Ori A, Barone P, Antonini A, DS Group (2015) Prevalence and associated features of self-reported freezing of gait in Parkinson disease: the DEEP FOG study. Parkinsonism Relat Disord 21(6):644–649. doi:10.1016/j.parkreldis.2015.03.028

    Article  CAS  PubMed  Google Scholar 

  2. Nutt JG, Bloem BR, Giladi N, Hallett M, Horak FB, Nieuwboer A (2011) Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol 10(8):734–744. doi:10.1016/S1474-4422(11)70143-0

    Article  PubMed  Google Scholar 

  3. Heremans E, Nieuwboer A, Vercruysse S (2013) Freezing of gait in Parkinson’s disease: where are we now? Curr Neurol Neurosci Rep 13(6):350. doi:10.1007/s11910-013-0350-7

    Article  PubMed  Google Scholar 

  4. Vandenbossche J, Deroost N, Soetens E, Coomans D, Spildooren J, Vercruysse S, Nieuwboer A, Kerckhofs E (2012) Freezing of gait in Parkinson’s disease: disturbances in automaticity and control. Front Hum Neurosci 6:356. doi:10.3389/fnhum.2012.00356

    PubMed  Google Scholar 

  5. Nieuwboer A, Feys P, de Weerdt W, Dom R (1997) Is using a cue the clue to the treatment of freezing in Parkinson’s disease? Physiother Res Int 2(3):125–132 (discussion 133–124)

    Article  CAS  PubMed  Google Scholar 

  6. Rocha PA, Porfirio GM, Ferraz HB, Trevisani VF (2014) Effects of external cues on gait parameters of Parkinson’s disease patients: a systematic review. Clin Neurol Neurosurg 124:127–134. doi:10.1016/j.clineuro.2014.06.026

    Article  PubMed  Google Scholar 

  7. Nonnekes J, Snijders AH, Nutt JG, Deuschl G, Giladi N, Bloem BR (2015) Freezing of gait: a practical approach to management. Lancet Neurol 14(7):768–778. doi:10.1016/S1474-4422(15)00041-1

    Article  PubMed  Google Scholar 

  8. Vercruysse S, Spildooren J, Heremans E, Vandenbossche J, Wenderoth N, Swinnen SP, Vandenberghe W, Nieuwboer A (2012) Abnormalities and cue dependence of rhythmical upper-limb movements in Parkinson patients with freezing of gait. Neurorehabil Neural Repair 26(6):636–645. doi:10.1177/1545968311431964

    Article  PubMed  Google Scholar 

  9. Spildooren J, Vercruysse S, Meyns P, Vandenbossche J, Heremans E, Desloovere K, Vandenberghe W, Nieuwboer A (2012) Turning and unilateral cueing in Parkinson’s disease patients with and without freezing of gait. Neuroscience 207:298–306. doi:10.1016/j.neuroscience.2012.01.024

    Article  CAS  PubMed  Google Scholar 

  10. Tolleson CM, Dobolyi DG, Roman OC, Kanoff K, Barton S, Wylie SA, Kubovy M, Claassen DO (2015) Dysrhythmia of timed movements in Parkinson’s disease and freezing of gait. Brain Res 1624:222–231. doi:10.1016/j.brainres.2015.07.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Peterson DS, Smulders K (2015) Cues and attention in parkinsonian gait: potential mechanisms and future directions. Front Neurol 6:255. doi:10.3389/fneur.2015.00255

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bachlin M, Plotnik M, Roggen D, Giladi N, Hausdorff JM, Troster G (2010) A wearable system to assist walking of Parkinson s disease patients. Methods Inf Med 49(1):88–95. doi:10.3414/ME09-02-0003

    CAS  PubMed  Google Scholar 

  13. Espay AJ, Baram Y, Dwivedi AK, Shukla R, Gartner M, Gaines L, Duker AP, Revilla FJ (2010) At-home training with closed-loop augmented-reality cueing device for improving gait in patients with Parkinson disease. J Rehabil Res Dev 47(6):573–581

    Article  PubMed  Google Scholar 

  14. Hove MJ, Suzuki K, Uchitomi H, Orimo S, Miyake Y (2012) Interactive rhythmic auditory stimulation reinstates natural 1/f timing in gait of Parkinson’s patients. PLoS One 7(3):e32600. doi:10.1371/journal.pone.0032600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao Y, Nonnekes J, Storcken EJ, Janssen S, van Wegen EE, Bloem BR, Dorresteijn LD, van Vugt JP, Heida T, van Wezel RJ (2016) Feasibility of external rhythmic cueing with the Google Glass for improving gait in people with Parkinson’s disease. J Neurol 263(6):1156–1165. doi:10.1007/s00415-016-8115-2

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ferraye MU, Fraix V, Pollak P, Bloem BR, Debu B (2016) The laser-shoe: a new form of continuous ambulatory cueing for patients with Parkinson’s disease. Parkinsonism Relat Disord 29:127–128. doi:10.1016/j.parkreldis.2016.05.004

    Article  PubMed  Google Scholar 

  17. Ginis P, Nieuwboer A, Dorfman M, Ferrari A, Gazit E, Canning CG, Rocchi L, Chiari L, Hausdorff JM, Mirelman A (2016) Feasibility and effects of home-based smartphone-delivered automated feedback training for gait in people with Parkinson’s disease: a pilot randomized controlled trial. Parkinsonism Relat Disord 22:28–34. doi:10.1016/j.parkreldis.2015.11.004

    Article  PubMed  Google Scholar 

  18. Baram Y, Aharon-Peretz J, Badarny S, Susel Z, Schlesinger I (2016) Closed-loop auditory feedback for the improvement of gait in patients with Parkinson’s disease. J Neurol Sci 363:104–106. doi:10.1016/j.jns.2016.02.021

    Article  PubMed  Google Scholar 

  19. Ginis P, Heremans E, Ferrari A, Dockx K, Canning CG, Nieuwboer A (2017) Prolonged walking with a wearable system providing intelligent auditory input in people with Parkinson’s disease. Front Neurol 8:128. doi:10.3389/fneur.2017.00128

    Article  PubMed  PubMed Central  Google Scholar 

  20. Keus SH, Munneke M, Graziano M, Paltamaa J, Pelosin E, Domingos J, Brühlmann S, Ramaswamy B, Prins J, Struiksma C, Rochester L, Nieuwboer A, Bloem BR (2014) European Physiotherapy Guideline for Parkinson’s disease. https://parkinsonnet.typeform.com/to/nX4O6E. Accessed 10 Apr 2017

  21. Willems AM, Nieuwboer A, Chavret F, Desloovere K, Dom R, Rochester L, Jones D, Kwakkel G, Van Wegen E (2006) The use of rhythmic auditory cues to influence gait in patients with Parkinson’s disease, the differential effect for freezers and non-freezers, an explorative study. Disabil Rehabil 28(11):721–728. doi:10.1080/09638280500386569

    Article  CAS  PubMed  Google Scholar 

  22. Arias P, Cudeiro J (2010) Effect of rhythmic auditory stimulation on gait in Parkinsonian patients with and without freezing of gait. PLoS One 5(3):e9675. doi:10.1371/journal.pone.0009675

    Article  PubMed  PubMed Central  Google Scholar 

  23. Morris R, Lord S, Bunce J, Burn D, Rochester L (2016) Gait and cognition: mapping the global and discrete relationships in ageing and neurodegenerative disease. Neurosci Biobehav Rev 64:326–345. doi:10.1016/j.neubiorev.2016.02.012

    Article  PubMed  Google Scholar 

  24. Knobl P, Kielstra L, Almeida Q (2012) The relationship between motor planning and freezing of gait in Parkinson’s disease. J Neurol Neurosurg Psychiatry 83(1):98–101. doi:10.1136/jnnp-2011-300869

    Article  PubMed  Google Scholar 

  25. Pieruccini-Faria F, Jones JA, Almeida QJ (2014) Motor planning in Parkinson’s disease patients experiencing freezing of gait: the influence of cognitive load when approaching obstacles. Brain Cogn 87:76–85. doi:10.1016/j.bandc.2014.03.005

    Article  PubMed  Google Scholar 

  26. Mohammadi F, Bruijn SM, Vervoort G, van Wegen EE, Kwakkel G, Verschueren S, Nieuwboer A (2015) Motor switching and motor adaptation deficits contribute to freezing of gait in Parkinson’s disease. Neurorehabil Neural Repair 29(2):132–142. doi:10.1177/1545968314545175

    Article  PubMed  Google Scholar 

  27. Hausdorff JM, Schaafsma JD, Balash Y, Bartels AL, Gurevich T, Giladi N (2003) Impaired regulation of stride variability in Parkinson’s disease subjects with freezing of gait. Exp Brain Res 149(2):187–194. doi:10.1007/s00221-002-1354-8

    Article  CAS  PubMed  Google Scholar 

  28. Michely J, Volz LJ, Barbe MT, Hoffstaedter F, Viswanathan S, Timmermann L, Eickhoff SB, Fink GR, Grefkes C (2015) Dopaminergic modulation of motor network dynamics in Parkinson’s disease. Brain 138(Pt 3):664–678. doi:10.1093/brain/awu381

    Article  PubMed  PubMed Central  Google Scholar 

  29. Casamassima F, Ferrari A, Milosevic B, Ginis P, Farella E, Rocchi L (2014) A wearable system for gait training in subjects with Parkinson’s disease. Sensors (Basel) 14(4):6229–6246. doi:10.3390/s140406229

    Article  Google Scholar 

  30. Stel VS, Smit JH, Pluijm SM, Visser M, Deeg DJ, Lips P (2004) Comparison of the LASA Physical Activity Questionnaire with a 7-day diary and pedometer. J Clin Epidemiol 57(3):252–258. doi:10.1016/j.jclinepi.2003.07.008

    Article  PubMed  Google Scholar 

  31. Bladh S, Nilsson MH, Hariz GM, Westergren A, Hobart J, Hagell P (2012) Psychometric performance of a generic walking scale (Walk-12G) in multiple sclerosis and Parkinson’s disease. J Neurol 259(4):729–738. doi:10.1007/s00415-011-6254-z

    Article  PubMed  Google Scholar 

  32. Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, Poewe W, Sampaio C, Stern MB, Dodel R, Dubois B, Holloway R, Jankovic J, Kulisevsky J, Lang AE, Lees A, Leurgans S, LeWitt PA, Nyenhuis D, Olanow CW, Rascol O, Schrag A, Teresi JA, van Hilten JJ, LaPelle N, Movement Disorder Society URTF (2008) Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord 23(15):2129–2170. doi:10.1002/mds.22340

    Article  PubMed  Google Scholar 

  33. Gill DJ, Freshman A, Blender JA, Ravina B (2008) The Montreal Cognitive Assessment as a screening tool for cognitive impairment in Parkinson’s disease. Mov Disord 23(7):1043–1046. doi:10.1002/mds.22017

    Article  PubMed  Google Scholar 

  34. Lim I, van Wegen E, de Goede C, Deutekom M, Nieuwboer A, Willems A, Jones D, Rochester L, Kwakkel G (2005) Effects of external rhythmical cueing on gait in patients with Parkinson’s disease: a systematic review. Clin Rehabil 19(7):695–713

    Article  CAS  PubMed  Google Scholar 

  35. Spaulding SJ, Barber B, Colby M, Cormack B, Mick T, Jenkins ME (2013) Cueing and gait improvement among people with Parkinson’s disease: a meta-analysis. Arch Phys Med Rehabil 94(3):562–570. doi:10.1016/j.apmr.2012.10.026

    Article  PubMed  Google Scholar 

  36. Nombela C, Hughes LE, Owen AM, Grahn JA (2013) Into the groove: can rhythm influence Parkinson’s disease? Neurosci Biobehav Rev 37(10 Pt 2):2564–2570. doi:10.1016/j.neubiorev.2013.08.003

    Article  PubMed  Google Scholar 

  37. Redgrave P, Rodriguez M, Smith Y, Rodriguez-Oroz MC, Lehericy S, Bergman H, Agid Y, DeLong MR, Obeso JA (2010) Goal-directed and habitual control in the basal ganglia: implications for Parkinson’s disease. Nat Rev Neurosci 11(11):760–772. doi:10.1038/nrn2915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sarma SV, Cheng ML, Eden U, Williams Z, Brown EN, Eskandar E (2012) The effects of cues on neurons in the basal ganglia in Parkinson’s disease. Front Integr Neurosci 6:40. doi:10.3389/fnint.2012.00040

    Article  PubMed  PubMed Central  Google Scholar 

  39. te Woerd ES, Oostenveld R, Bloem BR, de Lange FP, Praamstra P (2015) Effects of rhythmic stimulus presentation on oscillatory brain activity: the physiology of cueing in Parkinson’s disease. Neuroimage Clin 9:300–309. doi:10.1016/j.nicl.2015.08.018

    Article  Google Scholar 

  40. Young WR, Shreve L, Quinn EJ, Craig C, Bronte-Stewart H (2016) Auditory cueing in Parkinson’s patients with freezing of gait. What matters most: action-relevance or cue-continuity? Neuropsychologia 87:54–62. doi:10.1016/j.neuropsychologia.2016.04.034

    Article  PubMed  Google Scholar 

  41. Rochester L, Burn DJ, Woods G, Godwin J, Nieuwboer A (2009) Does auditory rhythmical cueing improve gait in people with Parkinson’s disease and cognitive impairment? A feasibility study. Mov Disord 24(6):839–845. doi:10.1002/mds.22400

    Article  PubMed  Google Scholar 

  42. Vandenbossche J, Deroost N, Soetens E, Coomans D, Spildooren J, Vercruysse S, Nieuwboer A, Kerckhofs E (2013) Impaired implicit sequence learning in Parkinson’s disease patients with freezing of gait. Neuropsychology 27(1):28–36. doi:10.1037/a0031278

    Article  PubMed  Google Scholar 

  43. Nieuwboer A, Rochester L, Muncks L, Swinnen SP (2009) Motor learning in Parkinson’s disease: limitations and potential for rehabilitation. Parkinsonism Relat Disord 15(Suppl 3):S53–S58. doi:10.1016/S1353-8020(09)70781-3

    Article  PubMed  Google Scholar 

  44. Espay AJ, Bonato P, Nahab FB, Maetzler W, Dean JM, Klucken J, Eskofier BM, Merola A, Horak F, Lang AE, Reilmann R, Giuffrida J, Nieuwboer A, Horne M, Little MA, Litvan I, Simuni T, Dorsey ER, Burack MA, Kubota K, Kamondi A, Godinho C, Daneault JF, Mitsi G, Krinke L, Hausdorff JM, Bloem BR, Papapetropoulos S, Movement Disorders Society Task Force on T (2016) Technology in Parkinson’s disease: challenges and opportunities. Mov Disord 31(9):1272–1282. doi:10.1002/mds.26642

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all volunteers who were willing to participate in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pieter Ginis.

Ethics declarations

Funding source

This work was supported by the European Union Seventh Framework Programme (FP7/2007-2013) CuPiD project [Grant Number 288516].

Conflicts of interest

AF has a significant financial interest in mHealth Technologies, a company that may have a commercial interest in the results of this research. All other authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ginis, P., Heremans, E., Ferrari, A. et al. External input for gait in people with Parkinson’s disease with and without freezing of gait: One size does not fit all. J Neurol 264, 1488–1496 (2017). https://doi.org/10.1007/s00415-017-8552-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-017-8552-6

Keywords

Navigation