Skip to main content

Advertisement

Log in

Olfactory impairment in Parkinson’s disease is a consequence of central nervous system decline

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Early diagnosis and timely treatment of Parkinson’s disease are essential factors to provide these patients with a longer period of a better quality of life. Olfactory loss is among the first non-motor symptoms of the disease; however, in light of the many causes of smell loss, it is a very unspecific biomarker and should only be used as part of a diagnostic test battery. In this study, we investigated the olfactory response in 71 subjects, consisting of Parkinson’s disease patients, hyposmic and anosmic patients of other causes, and normosmic individuals searching for sensitive, distinct biomarkers for which we used scalp event-related 64-channel electroencephalography and psychophysical tests. The analysis of the global field power indicated significant measurable differences between patients with Parkinson’s disease and otherwise olfactory dysfunctional and normosmic individuals. The localization of brain sources, in particular, provides evidence for differences in mainly late EEG-components suggesting a decline of central brain networks as a causal factor for olfactory loss in Parkinson’s disease. The findings indicate a different pattern of olfactory processing in patients with Parkinson’s disease compared to olfactory dysfunctions of other origin, which provide further insights into the mechanisms behind olfactory dysfunction in Parkinson’s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 20(4):415–455

    Article  CAS  PubMed  Google Scholar 

  2. Berg D, Postuma RB, Adler CH et al (2015) MDS research criteria for prodromal Parkinson’s disease. Mov Disord 30(12):1600–1611

    Article  PubMed  Google Scholar 

  3. Braak H, Ghebremedhin E, Rüb U, Bratzke H, Del Tredici K (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318(1):121–134

    Article  PubMed  Google Scholar 

  4. Del Tredici K, Rub U, De Vos RA, Bohl JR, Braak H (2002) Where does parkinson disease pathology begin in the brain? J Neuropathol Exp Neurol 61(5):413–426

    Article  PubMed  Google Scholar 

  5. Haehner A, Boesveldt S, Berendse HW et al (2009) Prevalence of smell loss in Parkinson’s disease—a multicenter study. Parkinsonism Relat Disord 15(7):490–494

    Article  CAS  PubMed  Google Scholar 

  6. Doty RL, Shaman P, Dann M (1984) Development of the University of Pennsylvania smell identification test: a standardized microencapsulated test of olfactory function. Physiol Behav 32(3):489–502

    Article  CAS  PubMed  Google Scholar 

  7. Hummel T, Sekinger B, Wolf SR, Pauli E, Kobal G (1997) ‘Sniffin’ sticks’: olfactory performance assessed by the combined testing of odor identification, odor discrimination and olfactory threshold. Chem Senses 22(1):39–52

    Article  CAS  PubMed  Google Scholar 

  8. Mueller A, Reichman H, Livermore A, Hummel T (2002) Olfactory function in idiopathic Parkinson’s disease: results from cross-sectional studies in IPD patients and long-term follow-up of de-novo IPD patients. J Neural Transm 109:805–811

    Article  Google Scholar 

  9. Wenning GK, Shephard B, Hawkes C, Petruckevitch A, Lees A, Quinn N (1995) Olfactory function in atypical parkinsonian syndromes. Acta Neurol Scand 91(4):247–250

    Article  CAS  PubMed  Google Scholar 

  10. Whitcroft KL, Cuevas M, Haehner A, Hummel T (2017) Patterns of olfactory impairment reflect underlying disease etiology. Laryngoscope 127(2):291–295

    Article  PubMed  Google Scholar 

  11. Hummel T, Kobal G (2001) Olfactory event-related potentials. In: Simon SA, Nicolelis MAL (eds) Methods and frontiers in chemosensory research. CRC Press, Boca Raton, pp 129–164

    Google Scholar 

  12. Harada H, Shiraishi K, Kato T (2003) Olfactory event-related potentials in normal subjects and patients with smell disorders. Clin Electroencephalogr 34(4):191–196

    Article  PubMed  Google Scholar 

  13. Picton TW, Lins OG, Scherg M (1994) Handbook of neurophysiology. Elsevier, Amsterdam

  14. Picton TW, Hillyard SA, Krausz HI, Galambos R (1974) Human auditory evoked potentials. I. Evaluation of components. Electroencephalogr Clin Neurophysiol 36(2):179–190

    Article  CAS  PubMed  Google Scholar 

  15. Kobal G, Plattig KH (1978) Objective olfactometry: methodological annotations for recording olfactory EEG-responses from the awake human. EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb 9(3):135–145

    CAS  PubMed  Google Scholar 

  16. Iannilli E, Beger M, Furer R, Hummel T (2015) A gustatory stimulator. J Neurosci Methods 255:12–16

    Article  PubMed  Google Scholar 

  17. Barz S, Hummel T, Pauli E, Majer M, Lang CJ, Kobal G (1997) Chemosensory event-related potentials in response to trigeminal and olfactory stimulation in idiopathic Parkinson’s disease. Neurology 49(5):1424–1431

    Article  CAS  PubMed  Google Scholar 

  18. Hawkes CH, Shephard BC, Daniel SE (1997) Olfactory dysfunction in Parkinson’s disease. J Neurol Neurosurg Psychiatry 62(5):436–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bocquillon P, Bourriez JL, Palmero-Soler E, Defebvre L, Derambure P, Dujardin K (2015) Impaired early attentional processes in Parkinson’s disease: a high-resolution event-related potentials study. PLoS One 10(7):e0131654

    Article  PubMed  PubMed Central  Google Scholar 

  20. Solis-Vivanco R, Rodriguez-Violante M, Rodriguez-Agudelo Y, Schilmann A, Rodriguez-Ortiz U, Ricardo-Garcell J (2015) The P3a wave: a reliable neurophysiological measure of Parkinson’s disease duration and severity. Clin Neurophysiol 126(11):2142–2149

    Article  PubMed  Google Scholar 

  21. Martinez-Horta S, Riba J, de Bobadilla RF et al (2014) Apathy in Parkinson’s disease: neurophysiological evidence of impaired incentive processing. J Neurosci 34(17):5918–5926

    Article  CAS  PubMed  Google Scholar 

  22. Mensen A, Poryazova R, Schwartz S, Khatami R (2014) Humor as a reward mechanism: event-related potentials in the healthy and diseased brain. PLoS One 9(1):e85978

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dietz J, Bradley MM, Jones J, Okun MS, Perlstein WM, Bowers D (2013) The late positive potential, emotion and apathy in Parkinson’s disease. Neuropsychologia 51(5):960–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Desmedt JE, Tomberg C, Noël P, Ozaki I (1990) Beware of the average reference in brain mapping. Electroencephalogr Clin Neurophysiol Suppl 41:22–27

    CAS  PubMed  Google Scholar 

  25. Lehmann D, Skrandies W (1980) Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroencephalogr Clin Neurophysiol 48(6):609–621

    Article  CAS  PubMed  Google Scholar 

  26. Pascual-Marqui RD, Lehmann D (1993) Comparison of topographic maps and the reference electrode: comments on two papers by Desmedt and collaborators. Electroencephalogr Clin Neurophysiol 88(530–531):534–536

    Google Scholar 

  27. Litvan I, Bhatia KP, Burn DJ et al (2003) Movement Disorders Society Scientific Issues Committee report: SIC task force appraisal of clinical diagnostic criteria for Parkinsonian disorders. Mov Disord 18(5):467–486

    Article  PubMed  Google Scholar 

  28. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198

    Article  CAS  PubMed  Google Scholar 

  29. Kobal G, Klimek L, Wolfensberger M et al (2000) Multicenter investigation of 1,036 subjects using a standardized method for the assessment of olfactory function combining tests of odor identification, odor discrimination, and olfactory thresholds. Eur Arch Otorhinolaryngol 257(4):205–211

    Article  CAS  PubMed  Google Scholar 

  30. Peirce JW (2007) PsychoPy–psychophysics software in Python. J Neurosci Methods 162(1–2):8–13

    Article  PubMed  PubMed Central  Google Scholar 

  31. Halliday AM, Halliday E, Kriss A, McDonald WI, Mushin J (1976) The pattern-evoked potential in compression of the anterior visual pathways. Brain 99(2):357–374

    Article  CAS  PubMed  Google Scholar 

  32. Bodis-Wollner I, Yahr MD (1978) Measurements of visual evoked potentials in Parkinson’s disease. Brain 101(4):661–671

    Article  CAS  PubMed  Google Scholar 

  33. Bodis-Wollner I, Yahr MD, Mylin L, Thornton J (1982) Dopaminergic deficiency and delayed visual evoked potentials in humans. Ann Neurol 11(5):478–483

    Article  CAS  PubMed  Google Scholar 

  34. Peppe A, Stanzione P, Pierelli F, De Angelis D, Pierantozzi M, Bernardi G (1995) Visual alterations in de novo Parkinson’s disease: pattern electroretinogram latencies are more delayed and more reversible by levodopa than are visual evoked potentials. Neurology 45(6):1144–1148

    Article  CAS  PubMed  Google Scholar 

  35. Grave de Peralta Menendez R, Gonzalez Andino S, Lantz G, Michel CM, Landis T (2001) Noninvasive localization of electromagnetic epileptic activity. I. Method descriptions and simulations. Brain Topogr 14(2):131–137

    Article  CAS  PubMed  Google Scholar 

  36. Michel CM, Murray MM, Lantz G, Gonzalez S, Spinelli L, Grave de Peralta R (2004) EEG source imaging. Clin Neurophysiol 115(10):2195–2222

    Article  PubMed  Google Scholar 

  37. Pause BM, Sojka B, Krauel K, Ferstl R (1996) The nature of the late positive complex within the olfactory event-related potential (OERP). Psychophysiology 33(4):376–384

    Article  CAS  PubMed  Google Scholar 

  38. Allman JM, Hakeem A, Erwin JM, Nimchinsky E, Hof P (2001) The anterior cingulate cortex. The evolution of an interface between emotion and cognition. Ann N Y Acad Sci 935:107–117

    Article  CAS  PubMed  Google Scholar 

  39. Rosenberg-Katz K, Maidan I, Jacob Y, Giladi N, Mirelman A, Hausdorff JM (2016) Alterations in conflict monitoring are related to functional connectivity in Parkinson’s disease. Cortex 82:277–286

    Article  PubMed  Google Scholar 

  40. Gaspar P, Berger B, Febvret A, Vigny A, Henry JP (1989) Catecholamine innervation of the human cerebral cortex as revealed by comparative immunohistochemistry of tyrosine hydroxylase and dopamine-beta-hydroxylase. J Comp Neurol 279(2):249–271

    Article  CAS  PubMed  Google Scholar 

  41. Carter CS, Braver TS, Barch DM, Botvinick MM, Noll D, Cohen JD (1998) Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 280(5364):747–749

    Article  CAS  PubMed  Google Scholar 

  42. Kuenig G, Leenders KL, Martin C, Magyar S, Schultz W (1999) Reward processing in Parkinsons disease A PET activation study. Neurology 52(2 suppl 2):A349

    Google Scholar 

  43. Torack RM, Morris JC (1988) The association of ventral tegmental area histopathology with adult dementia. Arch Neurol 45(5):497–501

    Article  CAS  PubMed  Google Scholar 

  44. German DC, Manaye K, Smith WK, Woodward DJ, Saper CB (1989) Midbrain dopaminergic cell loss in Parkinson’s disease: computer visualization. Ann Neurol 26(4):507–514

    Article  CAS  PubMed  Google Scholar 

  45. Rinne JO, Rummukainen J, Paljarvi L, Rinne UK (1989) Dementia in Parkinson’s disease is related to neuronal loss in the medial substantia nigra. Ann Neurol 26(1):47–50

    Article  CAS  PubMed  Google Scholar 

  46. Grossman M, Crino P, Reivich M, Stern MB, Hurtig HI (1992) Attention and sentence processing deficits in Parkinson’s disease: the role of anterior cingulate cortex. Cereb Cortex 2(6):513–525

    Article  CAS  PubMed  Google Scholar 

  47. Witter MP, Groenewegen HJ, Lopes da Silva FH, Lohman AH (1989) Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region. Prog Neurobiol 33(3):161–253

    Article  CAS  PubMed  Google Scholar 

  48. Hyman BT, Van Hoesen GW, Damasio AR, Barnes CL (1984) Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science 225(4667):1168–1170

    Article  CAS  PubMed  Google Scholar 

  49. Summerfield C, Junque C, Tolosa E et al (2005) Structural brain changes in Parkinson disease with dementia: a voxel-based morphometry study. Arch Neurol 62(2):281–285

    Article  PubMed  Google Scholar 

  50. Camicioli R, Moore MM, Kinney A, Corbridge E, Glassberg K, Kaye JA (2003) Parkinson’s disease is associated with hippocampal atrophy. Mov Disord 18(7):784–790

    Article  PubMed  Google Scholar 

  51. Xu Y, Yang J, Hu X, Shang H (2016) Voxel-based meta-analysis of gray matter volume reductions associated with cognitive impairment in Parkinson’s disease. J Neurol 263(6):1178–1187

    Article  CAS  PubMed  Google Scholar 

  52. Jahanshahi M, Jones CR, Zijlmans J et al (2010) Dopaminergic modulation of striato-frontal connectivity during motor timing in Parkinson’s disease. Brain 133(Pt 3):727–745

    Article  PubMed  Google Scholar 

  53. Farrer C, Frey SH, Van Horn JD et al (2008) The angular gyrus computes action awareness representations. Cereb Cortex 18(2):254–261

    Article  PubMed  Google Scholar 

  54. Seghier ML (2013) The angular gyrus: multiple functions and multiple subdivisions. Neuroscientist 19(1):43–61

    Article  PubMed  PubMed Central  Google Scholar 

  55. Seibyl JP, Marek KL, Quinlan D et al (1995) Decreased single-photon emission computed tomographic [123I]beta-CIT striatal uptake correlates with symptom severity in Parkinson’s disease. Ann Neurol 38(4):589–598

    Article  CAS  PubMed  Google Scholar 

  56. Gruzelier JH (1999) Functional neuropsychophysiological asymmetry in schizophrenia: a review and reorientation. Schizophr Bull 25(1):91–120

    Article  CAS  PubMed  Google Scholar 

  57. Innis RB, Seibyl JP, Scanley BE et al (1993) Single photon emission computed tomographic imaging demonstrates loss of striatal dopamine transporters in Parkinson disease. Proc Natl Acad Sci USA 90(24):11965–11969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Marek KL, Seibyl JP, Zoghbi SS et al (1996) [123I] beta-CIT/SPECT imaging demonstrates bilateral loss of dopamine transporters in hemi-Parkinson’s disease. Neurology 46(1):231–237

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to all volunteers, patients, and their families that contributed, with their dedicated participation, to the completion of the demanding tasks in this work. This research did not receive any specific Grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilia Iannilli.

Ethics declarations

Conflicts of interest

All the listed authors declare no conflict of interest in the conduct and reporting of this research.

Ethical standard

The study has been approved by the Ethics Board of the Medical Faculty of the “Technische Universität Dresden with all aspects of the study performed in accordance with the Declaration of Helsinki. All participants gave written consent. The author hereby declares that the research documented in the submitted manuscript has been carried out in accordance with the above stated ethical standards.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 227 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iannilli, E., Stephan, L., Hummel, T. et al. Olfactory impairment in Parkinson’s disease is a consequence of central nervous system decline. J Neurol 264, 1236–1246 (2017). https://doi.org/10.1007/s00415-017-8521-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-017-8521-0

Keywords

Navigation