Skip to main content

Advertisement

Log in

Functional connectome assessed using graph theory in drug-naive Parkinson’s disease

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

The purpose of this study is to investigate whether the topological organization of whole-brain functional network is disrupted in patients with Parkinson’s disease (PD). We employed resting-state functional MRI (R-fMRI) and graph theory to investigate the topological organization of the functional connectome in 47 early-stage drug-naïve PD patients and 47 healthy control subjects. Correlations between network properties and clinical variables were tested. Both the PD and control groups showed small-world architecture in brain functional networks. However, the PD patients had lower clustering coefficient and local efficiency relative to control subjects, indicating disrupted topologic organization and a shift toward randomization in their functional brain network. At node and connection level, reduced node centralities and connectivity strength were found mainly in temporal-occipital regions and also in sensorimotor regions of PD patients. In PD patients, altered global network properties correlated with cognitive function, while motor impairment was correlated with local connection changes. This study demonstrates a disruption of whole-brain topological organization of the functional brain networks in early-stage drug-naïve PD patients and this disruption might contribute to preclinical changes in cognitive process in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Achard S, Bullmore ET (2007) Efficiency and cost of economical brain functional networks. PLoS Comput Biol 3:174–183

    Article  CAS  Google Scholar 

  2. Agosta F, Canu E, Valsasina P, Riva N, Prelle A, Comi G, Filippi M (2013) Divergent brain network connectivity in amyotrophic lateral sclerosis. Neurobiol Aging 34:419–427

    Article  PubMed  Google Scholar 

  3. Baggio HC, Sala-Llonch R, Segura B, Marti MJ, Valldeoriola F, Compta Y, Tolosa E, Junque C (2014) functional brain networks and cognitive deficits in Parkinson’s disease. Hum Brain Mapp 35:4620–4634

    Article  PubMed  Google Scholar 

  4. Bassett DS, Bullmore E (2006) Small-world brain networks. Neuroscientist 12:512–523

    Article  PubMed  Google Scholar 

  5. Baumer T, Pramstaller PP, Siebner HR, Schippling S, Hagenah J, Peller M, Gerloff C, Klein C, Munchau A (2007) Sensorimotor integration is abnormal in asymptomatic Parkin mutation carriers: a TMS study. Neurology 69:1976–1981

    Article  CAS  PubMed  Google Scholar 

  6. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech: Theory Exp 2008:P10008

    Article  Google Scholar 

  7. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  8. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198

    Article  CAS  PubMed  Google Scholar 

  9. Cao Q, Shu N, An L, Wang P, Sun L, Xia MR, Wang JH, Gong GL, Zang YF, Wang YF, He Y (2013) Probabilistic diffusion tractography and graph theory analysis reveal abnormal white matter structural connectivity networks in drug-naive boys with attention deficit/hyperactivity disorder. J Neurosci 33:10676–10687

    Article  CAS  PubMed  Google Scholar 

  10. Cardoso EF, Fregni F, Maia FM, Melo LM, Sato JR, Cruz AC Jr, Bianchi ET, Fernandes DB, Monteiro ML, Barbosa ER, Amaro E Jr (2010) Abnormal visual activation in Parkinson’s disease patients. Mov Disord 25:1590–1596

    Article  PubMed  Google Scholar 

  11. Craddock RC, James GA, Holtzheimer PE 3rd, Hu XP, Mayberg HS (2012) A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum Brain Mapp 33:1914–1928

    Article  PubMed  Google Scholar 

  12. Delaveau P, Salgado-Pineda P, Fossati P, Witjas T, Azulay JP, Blin O (2010) Dopaminergic modulation of the default mode network in Parkinson’s disease. Eur Neuropsychopharmacol 20:784–792

    Article  CAS  PubMed  Google Scholar 

  13. Eberling JL, Richardson BC, Reed BR, Wolfe N, Jagust WJ (1994) Cortical glucose metabolism in Parkinson’s disease without dementia. Neurobiol Aging 15:329–335

    Article  CAS  PubMed  Google Scholar 

  14. Esposito F, Tessitore A, Giordano A, De Micco R, Paccone A, Conforti R, Pignataro G, Annunziato L, Tedeschi G (2013) Rhythm-specific modulation of the sensorimotor network in drug-naive patients with Parkinson’s disease by levodopa. Brain 136:710–725

    Article  PubMed  Google Scholar 

  15. Georgiou N, Iansek R, Bradshaw JL, Phillips JG, Mattingley JB, Bradshaw JA (1993) An evaluation of the role of internal cues in the pathogenesis of parkinsonian hypokinesia. Brain 116(Pt 6):1575–1587

    Article  PubMed  Google Scholar 

  16. Gottlich M, Munte TF, Heldmann M, Kasten M, Hagenah J, Kramer UM (2013) Altered resting state brain networks in Parkinson’s disease. PLoS One 8:e77336

    Article  PubMed Central  PubMed  Google Scholar 

  17. Hacker CD, Perlmutter JS, Criswell SR, Ances BM, Snyder AZ (2012) Resting state functional connectivity of the striatum in Parkinson’s disease. Brain 135:3699–3711

    Article  PubMed Central  PubMed  Google Scholar 

  18. He Y, Dagher A, Chen Z, Charil A, Zijdenbos A, Worsley K, Evans A (2009) Impaired small-world efficiency in structural cortical networks in multiple sclerosis associated with white matter lesion load. Brain 132:3366–3379

    Article  PubMed Central  PubMed  Google Scholar 

  19. He Y, Evans A (2010) Graph theoretical modeling of brain connectivity. Curr Opin Neurol 23:341–350

    PubMed  Google Scholar 

  20. Helmich RC, Derikx LC, Bakker M, Scheeringa R, Bloem BR, Toni I (2010) Spatial remapping of cortico-striatal connectivity in Parkinson’s disease. Cereb Cortex 20:1175–1186

    Article  PubMed  Google Scholar 

  21. Kandiah N, Narasimhalu K, Lau PN, Seah SH, Au WL, Tan LC (2009) Cognitive decline in early Parkinson’s disease. Mov Disord 24:605–608

    Article  PubMed  Google Scholar 

  22. Kelly AM, Uddin LQ, Biswal BB, Castellanos FX, Milham MP (2008) Competition between functional brain networks mediates behavioral variability. Neuroimage 39:527–537

    Article  PubMed  Google Scholar 

  23. Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87:198701

    Article  CAS  PubMed  Google Scholar 

  24. Luo C, Song W, Chen Q, Zheng Z, Chen K, Cao B, Yang J, Li J, Huang X, Gong Q, Shang HF (2014) Reduced functional connectivity in early-stage drug-naive Parkinson’s disease: a resting-state fMRI study. Neurobiol Aging 35(2):431–441

    Article  PubMed  Google Scholar 

  25. Luo C, Song W, Chen Q, Zheng Z, Chen K, Cao B, Yang J, Li J, Huang X, Gong Q, Shang HF (2014) Reduced functional connectivity in early-stage drug-naive Parkinson’s disease: a resting-state fMRI study. Neurobiol Aging 35:431–441

    Article  PubMed  Google Scholar 

  26. Melzer TR, Watts R, MacAskill MR, Pitcher TL, Livingston L, Keenan RJ, Dalrymple-Alford JC, Anderson TJ (2013) White matter microstructure deteriorates across cognitive stages in Parkinson disease. Neurology 80:1841–1849

    Article  CAS  PubMed  Google Scholar 

  27. Meppelink AM, de Jong BM, Renken R, Leenders KL, Cornelissen FW, van Laar T (2009) Impaired visual processing preceding image recognition in Parkinson’s disease patients with visual hallucinations. Brain 132:2980–2993

    Article  PubMed  Google Scholar 

  28. Olde Dubbelink KT, Hillebrand A, Stoffers D, Deijen JB, Twisk JW, Stam CJ, Berendse HW (2014) Disrupted brain network topology in Parkinson’s disease: a longitudinal magnetoencephalography study. Brain 137:197–207

    Article  PubMed  Google Scholar 

  29. Palmer SJ, Li J, Wang ZJ, McKeown MJ (2010) Joint amplitude and connectivity compensatory mechanisms in Parkinson’s disease. Neuroscience 166:1110–1118

    Article  CAS  PubMed  Google Scholar 

  30. Peppard RF, Martin WR, Carr GD, Grochowski E, Schulzer M, Guttman M, McGeer PL, Phillips AG, Tsui JK, Calne DB (1992) Cerebral glucose metabolism in Parkinson’s disease with and without dementia. Arch Neurol 49:1262–1268

    Article  CAS  PubMed  Google Scholar 

  31. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52:1059–1069

    Article  PubMed  Google Scholar 

  32. Schwartzman RJ, Alexander GM, Ferraro TN, Grothusen JR, Stahl SM (1988) Cerebral metabolism of parkinsonian primates 21 days after MPTP. Exp Neurol 102:307–313

    Article  CAS  PubMed  Google Scholar 

  33. Skidmore F, Korenkevych D, Liu Y, He G, Bullmore E, Pardalos PM (2011) Connectivity brain networks based on wavelet correlation analysis in Parkinson fMRI data. Neurosci Lett 499:47–51

    Article  CAS  PubMed  Google Scholar 

  34. Sporns O (2011) The human connectome: a complex network. Ann N Y Acad Sci 1224:109–125

    Article  PubMed  Google Scholar 

  35. Sporns O, Zwi JD (2004) The small world of the cerebral cortex. Neuroinformatics 2:145–162

    Article  PubMed  Google Scholar 

  36. Tessitore A, Esposito F, Vitale C, Santangelo G, Amboni M, Russo A, Corbo D, Cirillo G, Barone P, Tedeschi G (2012) Default-mode network connectivity in cognitively unimpaired patients with Parkinson disease. Neurology 79:2226–2232

    Article  PubMed  Google Scholar 

  37. Tononi G, Sporns O, Edelman GM (1994) A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc Natl Acad Sci USA 91:5033–5037

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Uc EY, Rizzo M, Anderson SW, Qian S, Rodnitzky RL, Dawson JD (2005) Visual dysfunction in Parkinson disease without dementia. Neurology 65:1907–1913

    Article  CAS  PubMed  Google Scholar 

  39. Wang J, Zuo X, Dai Z, Xia M, Zhao Z, Zhao X, Jia J, Han Y, He Y (2013) Disrupted functional brain connectome in individuals at risk for Alzheimer’s disease. Biol Psychiatry 73:472–481

    Article  CAS  PubMed  Google Scholar 

  40. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442

    Article  CAS  PubMed  Google Scholar 

  41. Wu T, Long X, Wang L, Hallett M, Zang Y, Li K, Chan P (2011) Functional connectivity of cortical motor areas in the resting state in Parkinson’s disease. Hum Brain Mapp 32:1443–1457

    Article  PubMed  Google Scholar 

  42. Zalesky A, Fornito A, Bullmore ET (2010) Network-based statistic: identifying differences in brain networks. Neuroimage 53:1197–1207

    Article  PubMed  Google Scholar 

  43. Zhang J, Wang J, Wu Q, Kuang W, Huang X, He Y, Gong Q (2011) Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder. Biol Psychiatry 70:334–342

    Article  PubMed  Google Scholar 

  44. Zheng Z, Shemmassian S, Wijekoon C, Kim W, Bookheimer SY, Pouratian N (2014) DTI correlates of distinct cognitive impairments in Parkinson’s disease. Hum Brain Mapp 35(4):1325–1333

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Conflicts of interest

There was no potential conflict of interest.

Ethical standard

The study has been approved by the local research ethics committee. All persons involved in this study gave their informed consent prior to their inclusion in the study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Yong Gong or Hui-Fang Shang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 65 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, C., Guo, X., Song, W. et al. Functional connectome assessed using graph theory in drug-naive Parkinson’s disease. J Neurol 262, 1557–1567 (2015). https://doi.org/10.1007/s00415-015-7750-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-015-7750-3

Keywords

Navigation