Skip to main content
Log in

Mitochondrial dysfunction in blood cells from amyotrophic lateral sclerosis patients

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Mitochondrial dysfunction is implicated in amyotrophic lateral sclerosis, where the progressive degeneration of motor neurons results in muscle atrophy, paralysis and death. Abnormalities in both central nervous system and muscle mitochondria have previously been demonstrated in patient samples, indicating systemic disease. In this case–control study, venous blood samples were acquired from 24 amyotrophic lateral sclerosis patients and 21 age-matched controls. Platelets and peripheral blood mononuclear cells were isolated and mitochondrial oxygen consumption measured in intact and permeabilized cells with additions of mitochondrial substrates, inhibitors and titration of an uncoupler. Respiratory values were normalized to cell count and for two markers of cellular mitochondrial content, citrate synthase activity and mitochondrial DNA, respectively. Mitochondrial function was correlated with clinical staging of disease severity. Complex IV (cytochrome c-oxidase)-activity normalized to mitochondrial content was decreased in platelets from amyotrophic lateral sclerosis patients both when normalized to citrate synthase activity and mitochondrial DNA copy number. In mononuclear cells, complex IV-activity was decreased when normalized to citrate synthase activity. Mitochondrial content was increased in amyotrophic lateral sclerosis patient platelets. In mononuclear cells, complex I activity declined and mitochondrial content increased progressively with advancing disease stage. The findings are, however, based on small subsets of patients and need to be confirmed. We conclude that when normalized to mitochondria-specific content, complex IV-activity is reduced in blood cells from amyotrophic lateral sclerosis patients and that there is an apparent compensatory increase in cellular mitochondrial content. This supports systemic involvement in amyotrophic lateral sclerosis and suggests further study of mitochondrial function in blood cells as a future biomarker for the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ALS:

Amyotrophic lateral sclerosis

BSA:

Bovine serum albumin

BZD:

Benzodiazepines

CI:

Complex I

CII:

Complex II

CIV:

Complex IV

CNS:

Central nervous system

CS:

Citrate synthase

EDTA:

Ethylenediaminetetraacetic acid

EGTA:

Ethyleneglycoltetraacetic acid

ETS:

Electron transport system

FCCP:

Carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone

HEPES:

4-(2-hydroxyethyl)-1-Piperazineethanesulfonic acid

mtDNA:

Mitochondrial DNA

OXPHOS:

Respiration associated with ATP synthesis by oxidative phosphorylation

PBMC:

Peripheral blood mononuclear cell

PSMA:

Progressive spinal muscular atrophy

SD:

Standard deviation

SSRI:

Selective serotonin re-uptake inhibitor

TMPD:

Tetramethylphenylenediamine

References

  1. Appel SH (2006) Is ALS a systemic disorder? Evidence from muscle mitochondria. Exp Neurol 198:1–3

    Article  PubMed  Google Scholar 

  2. Borthwick GM, Johnson MA, Ince PG, Shaw PJ, Turnbull DM (1999) Mitochondrial enzyme activity in amyotrophic lateral sclerosis: implications for the role of mitochondria in neuronal cell death. Ann Neurol 46:787–790

    Article  CAS  PubMed  Google Scholar 

  3. Bosetti F, Brizzi F, Barogi S, Mancuso M, Siciliano G, Tendi EA, Murri L, Rapoport SI, Solaini G (2002) Cytochrome c oxidase and mitochondrial F1F0-ATPase (ATP synthase) activities in platelets and brain from patients with Alzheimer’s disease. Neurobiol Aging 23:371–376

    Article  CAS  PubMed  Google Scholar 

  4. Bowling AC, Schulz JB, Brown RH Jr, Beal MF (1993) Superoxide dismutase activity, oxidative damage, and mitochondrial energy metabolism in familial and sporadic amyotrophic lateral sclerosis. J Neurochem 61:2322–2325

    Article  CAS  PubMed  Google Scholar 

  5. Brooks BR, Miller RG, Swash M, Munsat TL, World Federation of Neurology Research Group on Motor Neuron D (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Mot Neuron Disord 1:293–299

    Article  Google Scholar 

  6. Browne SE, Bowling AC, Baik MJ, Gurney M, Brown RH Jr, Beal MF (1998) Metabolic dysfunction in familial, but not sporadic, amyotrophic lateral sclerosis. J Neurochem 71:281–287

    Article  CAS  PubMed  Google Scholar 

  7. Cozzolino M, Carri MT (2012) Mitochondrial dysfunction in ALS. Prog Neurobiol 97:54–66

    Article  CAS  PubMed  Google Scholar 

  8. Crugnola V, Lamperti C, Lucchini V, Ronchi D, Peverelli L, Prelle A, Sciacco M, Bordoni A, Fassone E, Fortunato F, Corti S, Silani V, Bresolin N, Di Mauro S, Comi GP, Moggio M (2010) Mitochondrial respiratory chain dysfunction in muscle from patients with amyotrophic lateral sclerosis. Arch Neurol 67:849–854

    Article  PubMed  Google Scholar 

  9. Curti D, Malaspina A, Facchetti G, Camana C, Mazzini L, Tosca P, Zerbi F, Ceroni M (1996) Amyotrophic lateral sclerosis: oxidative energy metabolism and calcium homeostasis in peripheral blood lymphocytes. Neurology 47:1060–1064

    Article  CAS  PubMed  Google Scholar 

  10. Echaniz-Laguna A, Zoll J, Ponsot E, N’Guessan B, Tranchant C, Loeffler JP, Lampert E (2006) Muscular mitochondrial function in amyotrophic lateral sclerosis is progressively altered as the disease develops: a temporal study in man. Exp Neurol 198:25–30

    Article  CAS  PubMed  Google Scholar 

  11. Fujita K, Yamauchi M, Shibayama K, Ando M, Honda M, Nagata Y (1996) Decreased cytochrome c oxidase activity but unchanged superoxide dismutase and glutathione peroxidase activities in the spinal cords of patients with amyotrophic lateral sclerosis. J Neurosci Res 45:276–281

    Article  CAS  PubMed  Google Scholar 

  12. Ghiasi P, Hosseinkhani S, Noori A, Nafissi S, Khajeh K (2012) Mitochondrial complex I deficiency and ATP/ADP ratio in lymphocytes of amyotrophic lateral sclerosis patients. Neurol Res 34:297–303

    CAS  PubMed  Google Scholar 

  13. Gnaiger E, Kuznetsov AV, Schneeberger S, Seiler R, Brandacher G, Steurer W, Margreiter R (2000) Mitochondria in the cold. In: Heldmaier G, Klingenspor M (eds) Life in the Cold. Springer, Heidelberg, pp 431–442

    Chapter  Google Scholar 

  14. Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, Burrell JR, Zoing MC (2011) Amyotrophic lateral sclerosis. Lancet 377:942–955

    Article  CAS  PubMed  Google Scholar 

  15. Kramer PA, Ravi S, Chacko B, Johnson MS, Darley-Usmar VM (2014) A review of the mitochondrial and glycolytic metabolism in human platelets and leukocytes: implications for their use as bioenergetic biomarkers. Redox Biol 2:206–210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Krige D, Carroll MT, Cooper JM, Marsden CD, Schapira AH (1992) Platelet mitochondrial function in Parkinson’s disease. The Royal Kings and Queens Parkinson Disease Research Group. Ann Neurol 32:782–788

    Article  CAS  PubMed  Google Scholar 

  17. Ladd AC, Keeney PM, Govind MM, Bennett JP Jr (2014) Mitochondrial oxidative phosphorylation transcriptome alterations in human amyotrophic lateral sclerosis spinal cord and blood. Neuromol Med 16:714–726

    Article  CAS  Google Scholar 

  18. Leuner K, Schulz K, Schutt T, Pantel J, Prvulovic D, Rhein V, Savaskan E, Czech C, Eckert A, Muller WE (2012) Peripheral mitochondrial dysfunction in Alzheimer’s disease: focus on lymphocytes. Mol Neurobiol 46:194–204

    Article  CAS  PubMed  Google Scholar 

  19. Nakano Y, Hirayama K, Terao K (1987) Hepatic ultrastructural changes and liver dysfunction in amyotrophic lateral sclerosis. Arch Neurol 44:103–106

    Article  CAS  PubMed  Google Scholar 

  20. Ono S, Shimizu N, Imai T, Rodriguez GP (2001) Urinary collagen metabolite excretion in amyotrophic lateral sclerosis. Muscle Nerve 24:821–825

    Article  CAS  PubMed  Google Scholar 

  21. Parker WD Jr, Boyson SJ, Parks JK (1989) Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol 26:719–723

    Article  PubMed  Google Scholar 

  22. Picard M, Juster RP, McEwen BS (2014) Mitochondrial allostatic load puts the ‘gluc’ back in glucocorticoids. Nat Rev Endocrinol 10:303–310

    Article  CAS  PubMed  Google Scholar 

  23. Roche JC, Rojas-Garcia R, Scott KM, Scotton W, Ellis CE, Burman R, Wijesekera L, Turner MR, Leigh PN, Shaw CE, Al-Chalabi A (2012) A proposed staging system for amyotrophic lateral sclerosis. Brain 135:847–852

    Article  PubMed Central  PubMed  Google Scholar 

  24. Shrivastava M, Vivekanandhan S (2011) An insight into ultrastructural and morphological alterations of platelets in neurodegenerative diseases. Ultrastruct Pathol 35:110–116

    Article  PubMed  Google Scholar 

  25. Shrivastava M, Vivekanandhan S, Pati U, Behari M, Das TK (2011) Mitochondrial perturbance and execution of apoptosis in platelet mitochondria of patients with amyotrophic lateral sclerosis. Int J Neurosci 121:149–158

    Article  PubMed  Google Scholar 

  26. Sjovall F, Ehinger JK, Marelsson SE, Morota S, Frostner EA, Uchino H, Lundgren J, Arnbjornsson E, Hansson MJ, Fellman V, Elmer E (2013) Mitochondrial respiration in human viable platelets–methodology and influence of gender, age and storage. Mitochondrion 13:7–14

    Article  PubMed  Google Scholar 

  27. Sjovall F, Morota S, Persson J, Hansson MJ, Elmer E (2013) Patients with sepsis exhibit increased mitochondrial respiratory capacity in peripheral blood immune cells. Crit Care 17:R152

    Article  PubMed Central  PubMed  Google Scholar 

  28. Swerdlow RH, Parks JK, Cassarino DS, Trimmer PA, Miller SW, Maguire DJ, Sheehan JP, Maguire RS, Pattee G, Juel VC, Phillips LH, Tuttle JB, Bennett JP Jr, Davis RE, Parker WD Jr (1998) Mitochondria in sporadic amyotrophic lateral sclerosis. Exp Neurol 153:135–142

    Article  CAS  PubMed  Google Scholar 

  29. Swerdlow RH, Parks JK, Pattee G, Parker WD Jr (2000) Role of mitochondria in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Mot Neuron Disord 1:185–190

    Article  CAS  Google Scholar 

  30. Vielhaber S, Kunz D, Winkler K, Wiedemann FR, Kirches E, Feistner H, Heinze HJ, Elger CE, Schubert W, Kunz WS (2000) Mitochondrial DNA abnormalities in skeletal muscle of patients with sporadic amyotrophic lateral sclerosis. Brain 123(Pt 7):1339–1348

    Article  PubMed  Google Scholar 

  31. Wiedemann FR, Manfredi G, Mawrin C, Beal MF, Schon EA (2002) Mitochondrial DNA and respiratory chain function in spinal cords of ALS patients. J Neurochem 80:616–625

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Eleonor Åsander-Frostner and Albana Shahini for technical support, and Katarina Johansson for help with patient identification and recruitment. Funding: Swedish Research Council (2011-3470), Swedish government project and salary funding for clinically oriented medical research (ALF-grants).

Conflicts of interest

Johannes Ehinger, Magnus J. Hansson and Eskil Elmér own shares in NeuroVive Pharmaceutical AB, a public company active in the field of mitochondrial medicine. Saori Morota, Johannes Ehinger, Magnus J. Hansson and Eskil Elmér received salary support from NeuroVive Pharmaceutical AB during parts of the study. Gesine Paul has no conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes K. Ehinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehinger, J.K., Morota, S., Hansson, M.J. et al. Mitochondrial dysfunction in blood cells from amyotrophic lateral sclerosis patients. J Neurol 262, 1493–1503 (2015). https://doi.org/10.1007/s00415-015-7737-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-015-7737-0

Keywords

Navigation