Skip to main content

Advertisement

Log in

Association of IgM monoclonal gammopathy with progressive muscular atrophy and multifocal motor neuropathy: a case–control study

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Monoclonal gammopathy in patients with amyotrophic lateral sclerosis (ALS) and related disorders has been reported in small studies but the validity of the reported associations remains uncertain. Presence of monoclonal gammopathy may indicate specific pathogenic pathways and may facilitate the development of novel treatment strategies. The objective of this large case–control study was to determine the prevalence of monoclonal gammopathy in motor neuron diseases (MND) and multifocal motor neuropathy (MMN). Monoclonal gammopathy was determined by immunoelectrophoresis and immunofixation in serum from 445 patients with ALS, 158 patients with progressive muscular atrophy (PMA), 60 patients with primary lateral sclerosis (PLS), 88 patients with MMN and in 430 matched healthy controls. Anti-ganglioside antibody titers were determined in sera from patients with MMN and PMA, and in ALS and PLS patients with monoclonal gammopathy. Logistic regression analysis was used to investigate associations of monoclonal gammopathy with motor neuron diseases and clinical characteristics. Neither ALS nor PLS was associated with monoclonal gammopathy. IgM monoclonal gammopathy was more frequent in patients with PMA (8 %) (OR = 4.2; p = 0.001) and MMN (7 %) (OR = 5.8; p = 0.002) than in controls (2 %). High titers of anti-GM1 IgM antibodies were present in 43 % of MMN patients and 7 % of PMA patients. Patients with PMA and IgM monoclonal gammopathy or anti-GM1 antibodies had a higher age at onset, more often weakness of upper legs and more severe outcome than patients with MMN. PMA and MMN, but not ALS and PLS, are significantly associated with IgM monoclonal gammopathy and anti-GM1 antibodies. These results may indicate that a subset of patients presenting with PMA share pathogenic mechanisms with MMN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kyle RA, Therneau TM, Rajkumar SV, Larson DR, Plevak MF et al (2006) Prevalence of monoclonal gammopathy of undetermined significance. N Engl J Med 354:1362–1369

    Article  CAS  PubMed  Google Scholar 

  2. Merlini G, Stone MJ (2006) Dangerous small B-cell clones. Blood 108:2520–2530

    Article  CAS  PubMed  Google Scholar 

  3. Latov N, Sherman WH, Nemni R, Galassi G, Shyong JS et al (1980) Plasma-cell dyscrasia and peripheral neuropathy with a monoclonal antibody to peripheral-nerve myelin. N Engl J Med 303:618–621

    Article  CAS  PubMed  Google Scholar 

  4. Latov N (1995) Pathogenesis and therapy of neuropathies associated with monoclonal gammopathies. Ann Neurol 37(Suppl 1):S32–S42

    Article  PubMed  Google Scholar 

  5. Bida JP, Kyle RA, Therneau TM, Melton LJ 3rd, Plevak MF et al (2009) Disease associations with monoclonal gammopathy of undetermined significance: a population-based study of 17,398 patients. Mayo Clin Proc 84:685–693

    Article  PubMed Central  PubMed  Google Scholar 

  6. Niermeijer JM, Fischer K, Eurelings M, Franssen H, Wokke JH et al (2010) Prognosis of polyneuropathy due to IgM monoclonal gammopathy: a prospective cohort study. Neurology 74:406–412

    Article  CAS  PubMed  Google Scholar 

  7. Dalakas MC (2010) Pathogenesis and treatment of anti-MAG neuropathy. Curr Treat Options Neurol 12:71–83

    Article  PubMed  Google Scholar 

  8. Shy ME, Rowland LP, Smith T, Trojaborg W, Latov N et al (1986) Motor neuron disease and plasma cell dyscrasia. Neurology 36:1429–1436

    Article  CAS  PubMed  Google Scholar 

  9. Younger DS, Rowland LP, Latov N, Sherman W, Pesce M et al (1990) Motor neuron disease and amyotrophic lateral sclerosis: relation of high CSF protein content to paraproteinemia and clinical syndromes. Neurology 40:595–599

    Article  CAS  PubMed  Google Scholar 

  10. Duarte F, Binet S, Lacomblez L, Bouche P, Preud’homme JL et al (1991) Quantitative analysis of monoclonal immunoglobulins in serum of patients with amyotrophic lateral sclerosis. J Neurol Sci 104:88–91

    Article  CAS  PubMed  Google Scholar 

  11. Saito T, Irie S, Ito H, Kowa H (1992) Paraproteinemia and motor neuron disease. Rinsho Shinkeigaku 32:1146–1148

    CAS  PubMed  Google Scholar 

  12. Sanders KA, Rowland LP, Murphy PL, Younger DS, Latov N et al (1993) Motor neuron diseases and amyotrophic lateral sclerosis: GM1 antibodies and paraproteinemia. Neurology 43:418–420

    Article  CAS  PubMed  Google Scholar 

  13. Lavrnic D, Vidakovic A, Miletic V, Trikic R, Marinkovic Z et al (1995) Motor neuron disease and monoclonal gammopathy. Eur Neurol 35:104–107

    Article  CAS  PubMed  Google Scholar 

  14. Desai J, Swash M (1999) IgM paraproteinemia in a patient with primary lateral sclerosis. Neuromuscul Disord 9:38–40

    Article  CAS  PubMed  Google Scholar 

  15. Bentes C, de Carvalho M, Evangelista T, Sales-Luis ML (1999) Multifocal motor neuropathy mimicking motor neuron disease: nine cases. J Neurol Sci 169:76–79

    Article  CAS  PubMed  Google Scholar 

  16. Vlam L, van der Pol WL, Cats EA, Straver DC, Piepers S et al (2011) Multifocal motor neuropathy: diagnosis, pathogenesis and treatment strategies. Nat Rev Neurol 8:48–58

    Article  PubMed  Google Scholar 

  17. Brooks BR, Miller RG, Swash M, Munsat TL, World Federation of Neurology Research Group on Motor Neuron Diseases (2000) El escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:293–299

    Article  Google Scholar 

  18. Van Asseldonk JT, Van den Berg LH, Van den Berg-Vos RM, Wieneke GH, Wokke JH et al (2003) Demyelination and axonal loss in multifocal motor neuropathy: distribution and relation to weakness. Brain 126:186–198

    Article  PubMed  Google Scholar 

  19. Brugman F, Eymard-Pierre E, van den Berg LH, Wokke JH, Gauthier-Barichard F et al (2007) Adult-onset primary lateral sclerosis is not associated with mutations in the ALS2 gene. Neurology 69:702–704

    Article  CAS  PubMed  Google Scholar 

  20. Van den Berg-Vos RM, Franssen H, Wokke JH, Van Es HW, Van den Berg LH (2000) Multifocal motor neuropathy: diagnostic criteria that predict the response to immunoglobulin treatment. Ann Neurol 48:919–926

    Article  PubMed  Google Scholar 

  21. Cats EA, van der Pol WL, Piepers S, Franssen H, Jacobs BC et al (2010) Correlates of outcome and response to IVIg in 88 patients with multifocal motor neuropathy. Neurology 75:818–825

    Article  CAS  PubMed  Google Scholar 

  22. Eurelings M, Ang CW, Notermans NC, Van Doorn PA, Jacobs BC et al (2001) Antiganglioside antibodies in polyneuropathy associated with monoclonal gammopathy. Neurology 57:1909–1912

    Article  CAS  PubMed  Google Scholar 

  23. Pestronk A, Cornblath DR, Ilyas AA, Baba H, Quarles RH et al (1988) A treatable multifocal motor neuropathy with antibodies to GM1 ganglioside. Ann Neurol 24:73–78

    Article  CAS  PubMed  Google Scholar 

  24. Cats EA, Jacobs BC, Yuki N, Tio-Gillen AP, Piepers S et al (2010) Multifocal motor neuropathy: association of anti-GM1 IgM antibodies with clinical features. Neurology 75:1961–1967

    Article  CAS  PubMed  Google Scholar 

  25. Kuijf ML, van Doorn PA, Tio-Gillen AP, Geleijns K, Ang CW et al (2005) Diagnostic value of anti-GM1 ganglioside serology and validation of the INCAT-ELISA. J Neurol Sci 239:37–44

    Article  CAS  PubMed  Google Scholar 

  26. Van Asseldonk JT, Van den Berg LH, Kalmijn S, Wokke JH, Franssen H (2005) Criteria for demyelination based on the maximum slowing due to axonal degeneration, determined after warming in water at 37 degrees C: diagnostic yield in chronic inflammatory demyelinating polyneuropathy. Brain 128:880–891

    Article  PubMed  Google Scholar 

  27. Willison HJ, Chancellor AM, Paterson G, Veitch J, Singh S et al (1993) Antiglycolipid antibodies, immunoglobulins and paraproteins in motor neuron disease: a population based case-control study. J Neurol Sci 114:209–215

    Article  CAS  PubMed  Google Scholar 

  28. Rowland LP (2010) Progressive muscular atrophy and other lower motor neuron syndromes of adults. Muscle Nerve 41:161–165

    Article  PubMed  Google Scholar 

  29. Slee M, Selvan A, Donaghy M (2007) Multifocal motor neuropathy: the diagnostic spectrum and response to treatment. Neurology 69:1680–1687

    Article  PubMed  Google Scholar 

  30. Riva N, Gallia F, Iannaccone S, Corbo M, Terenghi F et al (2011) Chronic motor axonal neuropathy. J Peripher Nerv Syst 16:341–346

    Article  PubMed  Google Scholar 

  31. Parry GJ, Holtz SJ, Ben-Zeev D, Drori JB (1986) Gammopathy with proximal motor axonopathy simulating motor neuron disease. Neurology 36:273–276

    Article  CAS  PubMed  Google Scholar 

  32. Willison HJ, Yuki N (2002) Peripheral neuropathies and anti-glycolipid antibodies. Brain 125:2591–2625

    Article  PubMed  Google Scholar 

  33. Fitzpatrick AM, Mann CA, Barry S, Brennan K, Overell JR et al (2011) An open label clinical trial of complement inhibition in multifocal motor neuropathy. J Peripher Nerv Syst 16:84–91

    Article  PubMed  Google Scholar 

  34. Petratos S, Turnbull VJ, Papadopoulos R, Ayers M, Gonzales MF (1998) Antibodies against peripheral myelin glycolipids in people with HIV infection. Immunol Cell Biol 76:535–541

    Article  CAS  PubMed  Google Scholar 

  35. Dezube BJ, Aboulafia DM, Pantanowitz L (2004) Plasma cell disorders in HIV-infected patients: from benign gammopathy to multiple myeloma. AIDS Read 14(372–4):377–379

    Google Scholar 

  36. Gordon PH, Rowland LP, Younger DS, Sherman WH, Hays AP et al (1997) Lymphoproliferative disorders and motor neuron disease: an update. Neurology 48:1671–1678

    Article  CAS  PubMed  Google Scholar 

  37. Jolicoeur P, Rassart E, DesGroseillers L, Robitaille Y, Paquette Y et al (1991) Retrovirus-induced motor neuron disease of mice: molecular basis of neurotropism and paralysis. Adv Neurol 56:481–493

    CAS  PubMed  Google Scholar 

  38. MacGowan DJ, Scelsa SN, Waldron M (2001) An ALS-like syndrome with new HIV infection and complete response to antiretroviral therapy. Neurology 57:1094–1097

    Article  CAS  PubMed  Google Scholar 

  39. Verma A, Berger JR (2006) ALS syndrome in patients with HIV-1 infection. J Neurol Sci 240:59–64

    Article  CAS  PubMed  Google Scholar 

  40. McCormick AL, Brown RH Jr, Cudkowicz ME, Al-Chalabi A, Garson JA (2008) Quantification of reverse transcriptase in ALS and elimination of a novel retroviral candidate. Neurology 70:278–283

    Article  CAS  PubMed  Google Scholar 

  41. Galban-Horcajo F, Fitzpatrick AM, Hutton AJ, Dunn SM, Kalna G et al (2013) Antibodies to heteromeric glycolipid complexes in multifocal motor neuropathy. Eur J Neurol 20(1):62–70

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Prinses Beatrix Spierfonds; VSB fonds; Kersten Foundation; The Netherlands ALS Foundation; and the JR van Dijk and the Adessium Foundation. The research leading to these results has received funding from the European Community’s Health Seventh Framework Programme (FP7/2007–2013) under grant agreement number 259867.

Conflicts of interest

B. C. Jacobs received a travel grant from Baxter Biopharmaceutics and research support from the Netherlands Organization for Health Research and Development, Erasmus MC, Prinses Beatrix Spierfonds, Stichting Spieren voor Spieren, GBS-CIDP Foundation International and travel support from, and serves on the Editorial Board of the Journal of the Peripheral Nervous System. H. Franssen received grants from Baxter International Inc. and research support from the Prinses Beatrix Spierfonds. J. H. Veldink receives support from Thierry Latran Foundation and received travel grants from Baxter International Inc. W. L. van der Pol received travel grants from Baxter International Inc. and research support from the Prinses Beatrix Spierfonds and Stichting Spieren voor Spieren. L. H. van den Berg received travel grants and consultancy fees from Baxter; serves on scientific advisory boards for ARISLA (the Italian ALS Association), Prinses Beatrix Fonds, Thierry Latran Foundation, and Biogen Idec; serves on the editorial board of Amyotrophic Lateral Sclerosis; and receives research support from the Prinses Beatrix Spierfonds, Netherlands ALS Foundation, VSB Fonds, Adessium Foundation, and the European Union.

Ethical standard

The Medical Ethical Committee of the University Medical Center Utrecht approved the study protocol and therefore the study has been performed in accordance with the ethical standards laid down in the Declaration of Helsinki.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard H. van den Berg.

Additional information

W.-L. van der Pol and L. H. van den Berg contributed equally to the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlam, L., Piepers, S., Sutedja, N.A. et al. Association of IgM monoclonal gammopathy with progressive muscular atrophy and multifocal motor neuropathy: a case–control study. J Neurol 262, 666–673 (2015). https://doi.org/10.1007/s00415-014-7612-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-014-7612-4

Keywords

Navigation