Skip to main content

Advertisement

Log in

Body mass index delineates ALS from FTD: implications for metabolic health

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Weight loss and catabolic changes are increasingly recognized as factors that influence outcomes in patients with amyotrophic lateral sclerosis (ALS). An association between disease progression and low BMI has been reported in ALS; however, it remains unknown whether low BMI occurs across all forms of ALS and whether BMI changes with the development of cognitive impairment across the spectrum between ALS and frontotemporal dementia (FTD). One hundred and three ALS patients (56 limb predominant, 18 bulbar predominant, 13 ALS plus, 16 ALSFTD) were recruited and compared to 19 behavioral variant FTD (bvFTD) patients and a group of age-matched healthy controls. BMI was measured at the initial clinical visit. Patients were characterized as underweight, normal, overweight or obese, based on the current World Health Organization (WHO) guidelines. Limb and bulbar ALS patients had significantly lower BMI than ALS plus, ALSFTD, and bvFTD patient groups. When BMI was categorized using WHO guidelines the majority of the limb and bulbar ALS patients were either underweight or normal weight, whilst the majority of the ALS plus, ALSFTD and bvFTD patients were either overweight or obese. On follow-up BMI assessment the limb and bulbar groups tended to decline whilst ALS plus, ALSFTD and bvFTD groups remained stable or increased. BMI is significantly higher in ALS individuals with cognitive deficits. The present findings have prognostic implications for disease progression and may help delineate the metabolic profile across the ALSFTD spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Desport JC, Preux PM, Truong TC, Vallat JM, Sautereau D, Couratier P (1999) Nutritional status is a prognostic factor for survival in ALS patients. Neurology 53:1059–1063

    Article  CAS  PubMed  Google Scholar 

  2. Desport JC, Preux PM, Truong CT, Courat L, Vallat JM, Couratier P (2000) Nutritional assessment and survival in ALS patients. Amyotroph Lateral Scler Other Motor Neuron Disord 1:91–96

    Article  CAS  PubMed  Google Scholar 

  3. Kasarskis EJ, Berryman S, Vanderleest JG, Schneider AR, McClain CJ (1996) Nutritional status of patients with amyotrophic lateral sclerosis: relation to the proximity of death. Am J Clin Nutr 63:130–137

    CAS  PubMed  Google Scholar 

  4. Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, Burrell JR, Zoing MC (2011) Amyotrophic lateral sclerosis. Lancet 377:942–955

    Article  CAS  PubMed  Google Scholar 

  5. Turner MR, Hardiman O, Benatar M, Brooks BR, Chio A, de Carvalho M, Ince PG, Lin C, Miller RG, Mitsumoto H, Nicholson G, Ravits J, Shaw PJ, Swash M, Talbot K, Traynor BJ, Van den Berg LH, Veldink JH, Vucic S, Kiernan MC (2013) Controversies and priorities in amyotrophic lateral sclerosis. Lancet Neurol 12:310–322

    Article  CAS  PubMed  Google Scholar 

  6. Jawaid A, Murthy SB, Wilson AM, Qureshi SU, Amro MJ, Wheaton M, Simpson E, Harati Y, Strutt AM, York MK, Schulz PE (2010) A decrease in body mass index is associated with faster progression of motor symptoms and shorter survival in ALS. Amyotroph Lateral Scler 11:542–548

    Article  PubMed  Google Scholar 

  7. Reich-Slotky R, Andrews J, Cheng B, Buchsbaum R, Levy D, Kaufmann P, Thompson JL (2013) Body mass index (BMI) as predictor of ALSFRS-R score decline in ALS patients. Amyotroph Lateral Scler Frontotemporal Degener 14:212–216

    Article  PubMed  Google Scholar 

  8. Kuhnlein P, Gdynia HJ, Sperfeld AD, Lindner-Pfleghar B, Ludolph AC, Prosiegel M, Riecker A (2008) Diagnosis and treatment of bulbar symptoms in amyotrophic lateral sclerosis. Nat Clin Pract Neurol 4:366–374

    Article  PubMed  Google Scholar 

  9. Desport JC, Torny F, Lacoste M, Preux PM, Couratier P (2005) Hypermetabolism in ALS: correlations with clinical and paraclinical parameters. Neurodegener Dis 2:202–207

    Article  PubMed  Google Scholar 

  10. Dupuis L, Pradat PF, Ludolph AC, Loeffler JP (2011) Energy metabolism in amyotrophic lateral sclerosis. Lancet Neurol 10:75–82

    Article  CAS  PubMed  Google Scholar 

  11. Burrell JR, Kiernan MC, Vucic S, Hodges JR (2011) Motor neuron dysfunction in frontotemporal dementia. Brain 134:2582–2594

    Article  PubMed  Google Scholar 

  12. Lillo P, Mioshi E, Zoing MC, Kiernan MC, Hodges JR (2011) How common are behavioural changes in amyotrophic lateral sclerosis? Amyotroph Lateral Scler 12:45–51

    Article  PubMed  Google Scholar 

  13. Mioshi E, Caga J, Lillo P, Hsieh S, Ramsey E, Devenney E, Hornberger M, Hodges JR, Kiernan MC (2014) Neuropsychiatric changes precede classic motor symptoms in ALS and do not affect survival. Neurology 82:149–155

    Article  PubMed  Google Scholar 

  14. Ambikairajah, A, Devenney E, Flanagan E, Yew B, Mioshi E, Kiernan MC, Hodges JR, Hornberger M (2014) A visual MRI atrophy rating scale for the amyotrophic lateral sclerosis-frontotemporal dementia continuum. Amyotroph Lateral Scler Frontotemporal Degener

  15. Ikeda M, Brown J, Holland AJ, Fukuhara R, Hodges JR (2002) Changes in appetite, food preference, and eating habits in frontotemporal dementia and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 73:371–376

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Strong MJ, Grace GM, Freedman M, Lomen-Hoerth C, Woolley S, Goldstein LH, Murphy J, Shoesmith C, Rosenfeld J, Leigh PN, Bruijn L, Ince P, Figlewicz D (2009) Consensus criteria for the diagnosis of frontotemporal cognitive and behavioural syndromes in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 10:131–146

    Article  PubMed  Google Scholar 

  17. Diagnosis, ETFo, Management of Amyotrophic Lateral Sclerosis, Andersen PM, Abrahams S, Borasio GD, de Carvalho M, Chio A, Van Damme P, Hardiman O, Kollewe K, Morrison KE, Petri S, Pradat PF, Silani V, Tomik B, Wasner M, Weber M (2012) EFNS guidelines on the clinical management of amyotrophic lateral sclerosis (MALS)—revised report of an EFNS task force. Eur J Neurol 19:360–375

    Article  Google Scholar 

  18. Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, van Swieten JC, Seelaar H, Dopper EG, Onyike CU, Hillis AE, Josephs KA, Boeve BF, Kertesz A, Seeley WW, Rankin KP, Johnson JK, Gorno-Tempini ML, Rosen H, Prioleau-Latham CE, Lee A, Kipps CM, Lillo P, Piguet O, Rohrer JD, Rossor MN, Warren JD, Fox NC, Galasko D, Salmon DP, Black SE, Mesulam M, Weintraub S, Dickerson BC, Diehl-Schmid J, Pasquier F, Deramecourt V, Lebert F, Pijnenburg Y, Chow TW, Manes F, Grafman J, Cappa SF, Freedman M, Grossman M, Miller BL (2011) Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134:2456–2477

    Article  PubMed Central  PubMed  Google Scholar 

  19. Strong MJ (2008) The syndromes of frontotemporal dysfunction in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 9:323–338

    Article  CAS  PubMed  Google Scholar 

  20. Kaufmann P, Levy G, Thompson JL, Delbene ML, Battista V, Gordon PH, Rowland LP, Levin B, Mitsumoto H (2005) The ALSFRSr predicts survival time in an ALS clinic population. Neurology 64:38–43

    Article  CAS  PubMed  Google Scholar 

  21. Mioshi E, Lillo P, Yew B, Hsieh S, Savage S, Hodges JR, Kiernan MC, Hornberger M (2013) Cortical atrophy in ALS is critically associated with neuropsychiatric and cognitive changes. Neurology 80:1117–1123

    Article  PubMed  Google Scholar 

  22. Wedderburn C, Wear H, Brown J, Mason SJ, Barker RA, Hodges J, Williams-Gray C (2008) The utility of the Cambridge Behavioural Inventory in neurodegenerative disease. J Neurol Neurosurg Psychiatry 79:500–503

    Article  CAS  PubMed  Google Scholar 

  23. Mioshi E, Dawson K, Mitchell J, Arnold R, Hodges JR (2006) The Addenbrooke’s Cognitive Examination Revised (ACE-R): a brief cognitive test battery for dementia screening. Int J Geriatr Psychiatry 21:1078–1085

    Article  PubMed  Google Scholar 

  24. (1998) Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults: executive summary. Expert Panel on the Identification, Evaluation, and Treatment of Overweight in Adults. Am J Clin Nutr 68:899–917

  25. WHO (2000) Obesity: preventing and managing the global epidemic. Report of a WHO Consultation. WHO Technical Report Series 894. World Health Organization, Geneva

    Google Scholar 

  26. Gallo V, Wark PA, Jenab M, Pearce N, Brayne C, Vermeulen R, Andersen PM, Hallmans G, Kyrozis A, Vanacore N, Vahdaninia M, Grote V, Kaaks R, Mattiello A, Bueno-de-Mesquita HB, Peeters PH, Travis RC, Petersson J, Hansson O, Arriola L, Jimenez-Martin JM, Tjonneland A, Halkjaer J, Agnoli C, Sacerdote C, Bonet C, Trichopoulou A, Gavrila D, Overvad K, Weiderpass E, Palli D, Quiros JR, Tumino R, Khaw KT, Wareham N, Barricante-Gurrea A, Fedirko V, Ferrari P, Clavel-Chapelon F, Boutron-Ruault MC, Boeing H, Vigl M, Middleton L, Riboli E, Vineis P (2013) Prediagnostic body fat and risk of death from amyotrophic lateral sclerosis: the EPIC cohort. Neurology 80:829–838

    Article  PubMed Central  PubMed  Google Scholar 

  27. Hodges JR, Davies R, Xuereb J, Kril J, Halliday G (2003) Survival in frontotemporal dementia. Neurology 61:349–354

    Article  CAS  PubMed  Google Scholar 

  28. Bouteloup C, Desport JC, Clavelou P, Guy N, Derumeaux-Burel H, Ferrier A, Couratier P (2009) Hypermetabolism in ALS patients: an early and persistent phenomenon. J Neurol 256:1236–1242

    Article  CAS  PubMed  Google Scholar 

  29. Menzies FM, Ince PG, Shaw PJ (2002) Mitochondrial involvement in amyotrophic lateral sclerosis. Neurochem Int 40:543–551

    Article  CAS  PubMed  Google Scholar 

  30. Lillo P, Savage S, Mioshi E, Kiernan MC, Hodges JR (2012) Amyotrophic lateral sclerosis and frontotemporal dementia: a behavioural and cognitive continuum. Amyotroph Lateral Scler 13:102–109

    Article  PubMed  Google Scholar 

  31. Uher R, Treasure J (2005) Brain lesions and eating disorders. J Neurol Neurosurg Psychiatry 76:852–857

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Alonso-Alonso M, Pascual-Leone A (2007) The right brain hypothesis for obesity. JAMA 297:1819–1822

    Article  CAS  PubMed  Google Scholar 

  33. Woolley JD, Gorno-Tempini ML, Seeley WW, Rankin K, Lee SS, Matthews BR, Miller BL (2007) Binge eating is associated with right orbitofrontal-insular-striatal atrophy in frontotemporal dementia. Neurology 69:1424–1433

    Article  CAS  PubMed  Google Scholar 

  34. Piguet O, Petersen A, Yin Ka Lam B, Gabery S, Murphy K, Hodges JR, Halliday GM (2011) Eating and hypothalamus changes in behavioral-variant frontotemporal dementia. Ann Neurol 69:312–319

    Article  PubMed Central  PubMed  Google Scholar 

  35. Lillo P, Mioshi E, Burrell JR, Kiernan MC, Hodges JR, Hornberger M (2012) Grey and white matter changes across the amyotrophic lateral sclerosis-frontotemporal dementia continuum. PLoS ONE 7:e43993

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Huisman MH, Seelen M, de Jong SW, Dorresteijn KR, van Doormaal PT, van der Kooi AJ, de Visser M, Schelhaas HJ, van den Berg LH, Veldink JH (2013) Lifetime physical activity and the risk of amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 84:976–981

    Article  PubMed  Google Scholar 

  37. Scarmeas N, Shih T, Stern Y, Ottman R, Rowland LP (2002) Premorbid weight, body mass, and varsity athletics in ALS. Neurology 59:773–775

    Article  CAS  PubMed  Google Scholar 

  38. Park YW, Zhu S, Palaniappan L, Heshka S, Carnethon MR, Heymsfield SB (2003) The metabolic syndrome: prevalence and associated risk factor findings in the US population from the Third National Health and Nutrition Examination Survey, 1988–1994. Arch Intern Med 163:427–436

    Article  PubMed Central  PubMed  Google Scholar 

  39. Dupuis L, Corcia P, Fergani A, Gonzalez De Aguilar JL, Bonnefont-Rousselot D, Bittar R, Seilhean D, Hauw JJ, Lacomblez L, Loeffler JP, Meininger V (2008) Dyslipidemia is a protective factor in amyotrophic lateral sclerosis. Neurology 70:1004–1009

    Article  CAS  PubMed  Google Scholar 

  40. Chio A, Calvo A, Ilardi A, Cavallo E, Moglia C, Mutani R, Palmo A, Galletti R, Marinou K, Papetti L, Mora G (2009) Lower serum lipid levels are related to respiratory impairment in patients with ALS. Neurology 73:1681–1685

    Article  CAS  PubMed  Google Scholar 

  41. Pradat PF, Bruneteau G, Gordon PH, Dupuis L, Bonnefont-Rousselot D, Simon D, Salachas F, Corcia P, Frochot V, Lacorte JM, Jardel C, Coussieu C, Le Forestier N, Lacomblez L, Loeffler JP, Meininger V (2010) Impaired glucose tolerance in patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler 11:166–171

    Article  CAS  PubMed  Google Scholar 

  42. Jawaid A, Salamone AR, Strutt AM, Murthy SB, Wheaton M, McDowell EJ, Simpson E, Appel SH, York MK, Schulz PE (2010) ALS disease onset may occur later in patients with pre-morbid diabetes mellitus. Eur J Neurol 17:733–739

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Heidi Cartwright for assistance with preparation of the figures.

This work was supported by funding to ForeFront, a collaborative research group dedicated to the study of frontotemporal dementia and motor neurone disease, from the National Health and Medical Research Council (NHMRC) of Australia program grant (#1037746) and the Australian Research Council Centre of Excellence in Cognition and its Disorders Memory Node (CE110001021), and an NHMRC project grant (APP1003139); a Royal Australasian College of Physicians scholarship and Motor Neuron disease Association of Australia scholarship to RA; an ARC Federation Fellowship (FF0776229 to JRH); and an NHMRC of Australia Career Development Fellowship (APP1022684 to OP).

We are grateful to the research participants involved with the ForeFront research studies.

Conflicts of interest

No author reports any competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Ahmed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, R.M., Mioshi, E., Caga, J. et al. Body mass index delineates ALS from FTD: implications for metabolic health. J Neurol 261, 1774–1780 (2014). https://doi.org/10.1007/s00415-014-7416-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-014-7416-6

Keywords

Navigation